Properties

Label 2-3654-21.20-c1-0-53
Degree $2$
Conductor $3654$
Sign $-0.135 + 0.990i$
Analytic cond. $29.1773$
Root an. cond. $5.40160$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·2-s − 4-s + 2.09·5-s + (−2.34 + 1.22i)7-s + i·8-s − 2.09i·10-s + 5.08i·11-s − 5.72i·13-s + (1.22 + 2.34i)14-s + 16-s − 0.0838·17-s − 2.68i·19-s − 2.09·20-s + 5.08·22-s − 5.04i·23-s + ⋯
L(s)  = 1  − 0.707i·2-s − 0.5·4-s + 0.936·5-s + (−0.887 + 0.461i)7-s + 0.353i·8-s − 0.662i·10-s + 1.53i·11-s − 1.58i·13-s + (0.326 + 0.627i)14-s + 0.250·16-s − 0.0203·17-s − 0.615i·19-s − 0.468·20-s + 1.08·22-s − 1.05i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3654 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.135 + 0.990i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3654 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.135 + 0.990i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3654\)    =    \(2 \cdot 3^{2} \cdot 7 \cdot 29\)
Sign: $-0.135 + 0.990i$
Analytic conductor: \(29.1773\)
Root analytic conductor: \(5.40160\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3654} (755, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3654,\ (\ :1/2),\ -0.135 + 0.990i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.582030932\)
\(L(\frac12)\) \(\approx\) \(1.582030932\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + iT \)
3 \( 1 \)
7 \( 1 + (2.34 - 1.22i)T \)
29 \( 1 + iT \)
good5 \( 1 - 2.09T + 5T^{2} \)
11 \( 1 - 5.08iT - 11T^{2} \)
13 \( 1 + 5.72iT - 13T^{2} \)
17 \( 1 + 0.0838T + 17T^{2} \)
19 \( 1 + 2.68iT - 19T^{2} \)
23 \( 1 + 5.04iT - 23T^{2} \)
31 \( 1 - 2.19iT - 31T^{2} \)
37 \( 1 + 1.46T + 37T^{2} \)
41 \( 1 + 6.62T + 41T^{2} \)
43 \( 1 - 7.01T + 43T^{2} \)
47 \( 1 - 10.0T + 47T^{2} \)
53 \( 1 + 3.12iT - 53T^{2} \)
59 \( 1 - 6.23T + 59T^{2} \)
61 \( 1 - 0.169iT - 61T^{2} \)
67 \( 1 + 0.665T + 67T^{2} \)
71 \( 1 + 14.8iT - 71T^{2} \)
73 \( 1 - 3.15iT - 73T^{2} \)
79 \( 1 - 6.53T + 79T^{2} \)
83 \( 1 - 7.54T + 83T^{2} \)
89 \( 1 - 13.0T + 89T^{2} \)
97 \( 1 + 7.01iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.597252937520346703022045761570, −7.60918971002053921191228775336, −6.79827773348243384616417863094, −5.97418838243084206410250468009, −5.29559634614029762945781319514, −4.53597281744048348377841333655, −3.41741341639616156678979217992, −2.56824635808618300147545011534, −1.99640233645110805885832286149, −0.53443716851376306943713634056, 1.01874536810933312350347668463, 2.25277508804243804542468131593, 3.50550671885584463188179537206, 4.02623460054421760207370983569, 5.25888349038955443976858694962, 5.96480964100389547741825900017, 6.36520216421617688098606904152, 7.12775513285371401108538631051, 7.909487724834322636567681653017, 9.001217870719705071426901879602

Graph of the $Z$-function along the critical line