Properties

Label 2-3654-21.20-c1-0-20
Degree $2$
Conductor $3654$
Sign $0.599 - 0.800i$
Analytic cond. $29.1773$
Root an. cond. $5.40160$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·2-s − 4-s + 1.81·5-s + (−0.812 − 2.51i)7-s + i·8-s − 1.81i·10-s + 6.05i·11-s + 2.51i·13-s + (−2.51 + 0.812i)14-s + 16-s + 4.50·17-s − 4.56i·19-s − 1.81·20-s + 6.05·22-s + 6.67i·23-s + ⋯
L(s)  = 1  − 0.707i·2-s − 0.5·4-s + 0.813·5-s + (−0.307 − 0.951i)7-s + 0.353i·8-s − 0.575i·10-s + 1.82i·11-s + 0.696i·13-s + (−0.672 + 0.217i)14-s + 0.250·16-s + 1.09·17-s − 1.04i·19-s − 0.406·20-s + 1.29·22-s + 1.39i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3654 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.599 - 0.800i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3654 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.599 - 0.800i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3654\)    =    \(2 \cdot 3^{2} \cdot 7 \cdot 29\)
Sign: $0.599 - 0.800i$
Analytic conductor: \(29.1773\)
Root analytic conductor: \(5.40160\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3654} (755, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3654,\ (\ :1/2),\ 0.599 - 0.800i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.329210699\)
\(L(\frac12)\) \(\approx\) \(1.329210699\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + iT \)
3 \( 1 \)
7 \( 1 + (0.812 + 2.51i)T \)
29 \( 1 + iT \)
good5 \( 1 - 1.81T + 5T^{2} \)
11 \( 1 - 6.05iT - 11T^{2} \)
13 \( 1 - 2.51iT - 13T^{2} \)
17 \( 1 - 4.50T + 17T^{2} \)
19 \( 1 + 4.56iT - 19T^{2} \)
23 \( 1 - 6.67iT - 23T^{2} \)
31 \( 1 - 7.40iT - 31T^{2} \)
37 \( 1 + 6.58T + 37T^{2} \)
41 \( 1 + 8.46T + 41T^{2} \)
43 \( 1 + 5.99T + 43T^{2} \)
47 \( 1 + 5.40T + 47T^{2} \)
53 \( 1 + 0.309iT - 53T^{2} \)
59 \( 1 + 3.41T + 59T^{2} \)
61 \( 1 - 10.0iT - 61T^{2} \)
67 \( 1 - 15.2T + 67T^{2} \)
71 \( 1 + 2.60iT - 71T^{2} \)
73 \( 1 - 6.17iT - 73T^{2} \)
79 \( 1 + 9.93T + 79T^{2} \)
83 \( 1 + 13.0T + 83T^{2} \)
89 \( 1 - 10.4T + 89T^{2} \)
97 \( 1 - 9.92iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.964865662471032788699063561020, −7.84200911711015567449571625088, −7.06865081758180632562199755333, −6.65252527173149887344556889491, −5.34663673398900973128032123595, −4.85224602243825273604692412047, −3.92058788192555424904240637382, −3.13235632736217866204525418862, −1.92641923792098924653854245295, −1.38690789216272941609062315514, 0.38232193995889270996558418691, 1.81511312725496731808096730507, 3.05373591803734834122239433771, 3.58587621793803546223209564655, 5.03679953204046827453416762109, 5.69951322066116541919974141326, 6.00595028065552017087615276499, 6.68161593466222055255919871405, 7.979122803374727808561148146982, 8.322654480378292179682634809426

Graph of the $Z$-function along the critical line