Properties

Label 2-3654-21.20-c1-0-2
Degree $2$
Conductor $3654$
Sign $-0.491 + 0.870i$
Analytic cond. $29.1773$
Root an. cond. $5.40160$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·2-s − 4-s + 0.469·5-s + (1.12 + 2.39i)7-s i·8-s + 0.469i·10-s + 0.559i·11-s + 1.49i·13-s + (−2.39 + 1.12i)14-s + 16-s − 5.16·17-s − 4.33i·19-s − 0.469·20-s − 0.559·22-s + 0.835i·23-s + ⋯
L(s)  = 1  + 0.707i·2-s − 0.5·4-s + 0.209·5-s + (0.426 + 0.904i)7-s − 0.353i·8-s + 0.148i·10-s + 0.168i·11-s + 0.413i·13-s + (−0.639 + 0.301i)14-s + 0.250·16-s − 1.25·17-s − 0.995i·19-s − 0.104·20-s − 0.119·22-s + 0.174i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3654 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.491 + 0.870i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3654 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.491 + 0.870i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3654\)    =    \(2 \cdot 3^{2} \cdot 7 \cdot 29\)
Sign: $-0.491 + 0.870i$
Analytic conductor: \(29.1773\)
Root analytic conductor: \(5.40160\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3654} (755, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3654,\ (\ :1/2),\ -0.491 + 0.870i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.2033019944\)
\(L(\frac12)\) \(\approx\) \(0.2033019944\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - iT \)
3 \( 1 \)
7 \( 1 + (-1.12 - 2.39i)T \)
29 \( 1 - iT \)
good5 \( 1 - 0.469T + 5T^{2} \)
11 \( 1 - 0.559iT - 11T^{2} \)
13 \( 1 - 1.49iT - 13T^{2} \)
17 \( 1 + 5.16T + 17T^{2} \)
19 \( 1 + 4.33iT - 19T^{2} \)
23 \( 1 - 0.835iT - 23T^{2} \)
31 \( 1 + 2.13iT - 31T^{2} \)
37 \( 1 + 9.40T + 37T^{2} \)
41 \( 1 + 7.70T + 41T^{2} \)
43 \( 1 - 8.11T + 43T^{2} \)
47 \( 1 + 7.17T + 47T^{2} \)
53 \( 1 + 8.29iT - 53T^{2} \)
59 \( 1 - 4.55T + 59T^{2} \)
61 \( 1 - 11.3iT - 61T^{2} \)
67 \( 1 - 10.9T + 67T^{2} \)
71 \( 1 + 7.58iT - 71T^{2} \)
73 \( 1 - 4.35iT - 73T^{2} \)
79 \( 1 + 6.48T + 79T^{2} \)
83 \( 1 + 13.6T + 83T^{2} \)
89 \( 1 + 10.2T + 89T^{2} \)
97 \( 1 + 16.8iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.716496038744410581553346617352, −8.547122972426635005734194134656, −7.42835246767538065266008131988, −6.81535973119179570821027336894, −6.10300377408613154496519391322, −5.28473095816450317292339460236, −4.71412499799969246204708870134, −3.79671406128177026858212904224, −2.55266811618124654634575840981, −1.73289787592504164931986608758, 0.05722493038269146864662752951, 1.38970490492091829534179281925, 2.20181995905522504513779478548, 3.38718494974352644841476758182, 4.04607320316763325943957444397, 4.84462659931399032335123859709, 5.66426829346148724251099791703, 6.59181083462826943173545900288, 7.37602907501511787775179088150, 8.235085788247442389258295231067

Graph of the $Z$-function along the critical line