Properties

Label 2-3654-21.20-c1-0-67
Degree $2$
Conductor $3654$
Sign $-0.120 + 0.992i$
Analytic cond. $29.1773$
Root an. cond. $5.40160$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·2-s − 4-s + 2.84·5-s + (1.96 + 1.77i)7-s + i·8-s − 2.84i·10-s − 1.86i·11-s − 1.30i·13-s + (1.77 − 1.96i)14-s + 16-s + 1.41·17-s − 6.74i·19-s − 2.84·20-s − 1.86·22-s − 3.59i·23-s + ⋯
L(s)  = 1  − 0.707i·2-s − 0.5·4-s + 1.27·5-s + (0.741 + 0.671i)7-s + 0.353i·8-s − 0.900i·10-s − 0.562i·11-s − 0.362i·13-s + (0.474 − 0.524i)14-s + 0.250·16-s + 0.342·17-s − 1.54i·19-s − 0.636·20-s − 0.397·22-s − 0.749i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3654 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.120 + 0.992i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3654 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.120 + 0.992i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3654\)    =    \(2 \cdot 3^{2} \cdot 7 \cdot 29\)
Sign: $-0.120 + 0.992i$
Analytic conductor: \(29.1773\)
Root analytic conductor: \(5.40160\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3654} (755, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3654,\ (\ :1/2),\ -0.120 + 0.992i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.414214982\)
\(L(\frac12)\) \(\approx\) \(2.414214982\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + iT \)
3 \( 1 \)
7 \( 1 + (-1.96 - 1.77i)T \)
29 \( 1 + iT \)
good5 \( 1 - 2.84T + 5T^{2} \)
11 \( 1 + 1.86iT - 11T^{2} \)
13 \( 1 + 1.30iT - 13T^{2} \)
17 \( 1 - 1.41T + 17T^{2} \)
19 \( 1 + 6.74iT - 19T^{2} \)
23 \( 1 + 3.59iT - 23T^{2} \)
31 \( 1 + 6.18iT - 31T^{2} \)
37 \( 1 + 0.842T + 37T^{2} \)
41 \( 1 + 4.97T + 41T^{2} \)
43 \( 1 + 7.57T + 43T^{2} \)
47 \( 1 + 0.221T + 47T^{2} \)
53 \( 1 - 7.02iT - 53T^{2} \)
59 \( 1 - 6.56T + 59T^{2} \)
61 \( 1 + 10.2iT - 61T^{2} \)
67 \( 1 - 12.0T + 67T^{2} \)
71 \( 1 + 10.1iT - 71T^{2} \)
73 \( 1 + 8.62iT - 73T^{2} \)
79 \( 1 - 12.3T + 79T^{2} \)
83 \( 1 + 2.39T + 83T^{2} \)
89 \( 1 + 0.345T + 89T^{2} \)
97 \( 1 - 1.95iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.511195781787169458236871243713, −7.86558619028278223989430148636, −6.66247940316390500267680648873, −5.96091905251039922745607295242, −5.20801197364526410185041993490, −4.71035683159772721047229125265, −3.41477970543229360086003061543, −2.48709592478878943218697475900, −1.94858812325426817973028891384, −0.72807868628100521528663255176, 1.35071511491014436312199376323, 1.94968000511058454514070192197, 3.43461099982844427936083654484, 4.28285160443229259538902129182, 5.30763090797405309641209824258, 5.55024957802413558128597446548, 6.67964400008951002304486678841, 7.06348073507934141035904425286, 8.055826853016596340365080723295, 8.521126953489614203587023328442

Graph of the $Z$-function along the critical line