Properties

Label 2-3654-21.20-c1-0-29
Degree $2$
Conductor $3654$
Sign $0.0864 + 0.996i$
Analytic cond. $29.1773$
Root an. cond. $5.40160$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·2-s − 4-s − 2.70·5-s + (−2.02 + 1.70i)7-s + i·8-s + 2.70i·10-s − 4.07i·11-s + 1.53i·13-s + (1.70 + 2.02i)14-s + 16-s − 3.59·17-s + 1.31i·19-s + 2.70·20-s − 4.07·22-s + 4.52i·23-s + ⋯
L(s)  = 1  − 0.707i·2-s − 0.5·4-s − 1.20·5-s + (−0.763 + 0.645i)7-s + 0.353i·8-s + 0.854i·10-s − 1.22i·11-s + 0.427i·13-s + (0.456 + 0.539i)14-s + 0.250·16-s − 0.872·17-s + 0.302i·19-s + 0.604·20-s − 0.868·22-s + 0.942i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3654 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0864 + 0.996i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3654 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0864 + 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3654\)    =    \(2 \cdot 3^{2} \cdot 7 \cdot 29\)
Sign: $0.0864 + 0.996i$
Analytic conductor: \(29.1773\)
Root analytic conductor: \(5.40160\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3654} (755, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3654,\ (\ :1/2),\ 0.0864 + 0.996i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6522081614\)
\(L(\frac12)\) \(\approx\) \(0.6522081614\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + iT \)
3 \( 1 \)
7 \( 1 + (2.02 - 1.70i)T \)
29 \( 1 + iT \)
good5 \( 1 + 2.70T + 5T^{2} \)
11 \( 1 + 4.07iT - 11T^{2} \)
13 \( 1 - 1.53iT - 13T^{2} \)
17 \( 1 + 3.59T + 17T^{2} \)
19 \( 1 - 1.31iT - 19T^{2} \)
23 \( 1 - 4.52iT - 23T^{2} \)
31 \( 1 - 10.3iT - 31T^{2} \)
37 \( 1 + 1.93T + 37T^{2} \)
41 \( 1 - 1.48T + 41T^{2} \)
43 \( 1 + 2.93T + 43T^{2} \)
47 \( 1 - 0.571T + 47T^{2} \)
53 \( 1 + 1.02iT - 53T^{2} \)
59 \( 1 + 5.38T + 59T^{2} \)
61 \( 1 + 1.36iT - 61T^{2} \)
67 \( 1 - 5.57T + 67T^{2} \)
71 \( 1 + 9.26iT - 71T^{2} \)
73 \( 1 + 5.35iT - 73T^{2} \)
79 \( 1 + 11.6T + 79T^{2} \)
83 \( 1 - 0.631T + 83T^{2} \)
89 \( 1 - 10.8T + 89T^{2} \)
97 \( 1 + 4.74iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.613386851124346091341016992062, −7.79395584788327945078594710597, −6.88763191215141102142654410496, −6.10967746504062140717410966283, −5.23867332568217091233496192168, −4.30798418995560472672677435960, −3.42876619190110680144772923156, −3.08927209289557819866835924329, −1.78222621127581948379186654696, −0.34790949840451098875352506980, 0.60289978332135820497868237214, 2.36140659581341688306519918397, 3.51327697087295210426728454624, 4.28586260066536500349631362299, 4.66787497137447347622285787320, 5.88807600369328045403319944556, 6.73311228015408641465639301893, 7.22600580156841471388986381719, 7.79877932578949379609994511067, 8.515623338283448386415137993890

Graph of the $Z$-function along the critical line