Properties

Label 8-3648e4-1.1-c0e4-0-4
Degree $8$
Conductor $1.771\times 10^{14}$
Sign $1$
Analytic cond. $10.9862$
Root an. cond. $1.34929$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9-s + 2·25-s + 6·41-s − 4·49-s + 2·73-s − 2·97-s + 2·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 2·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 2·225-s + ⋯
L(s)  = 1  + 9-s + 2·25-s + 6·41-s − 4·49-s + 2·73-s − 2·97-s + 2·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 2·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 2·225-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{4} \cdot 19^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{4} \cdot 19^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{24} \cdot 3^{4} \cdot 19^{4}\)
Sign: $1$
Analytic conductor: \(10.9862\)
Root analytic conductor: \(1.34929\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{24} \cdot 3^{4} \cdot 19^{4} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(2.326388918\)
\(L(\frac12)\) \(\approx\) \(2.326388918\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2^2$ \( 1 - T^{2} + T^{4} \)
19$C_2^2$ \( 1 - T^{2} + T^{4} \)
good5$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
7$C_2$ \( ( 1 + T^{2} )^{4} \)
11$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
13$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
17$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
23$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
29$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
31$C_2$ \( ( 1 + T^{2} )^{4} \)
37$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
41$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 - T + T^{2} )^{2} \)
43$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
47$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
53$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
59$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
61$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
67$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
71$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
73$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
79$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
83$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
89$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
97$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.29410448524323304770776831846, −5.89644652236764756106245799314, −5.86629185944619482872825990953, −5.71770143118230883424237242428, −5.54001269221690852372945713596, −5.08055256612131778026644402121, −5.07153409069329517340915194154, −4.64534483487885840530721525383, −4.63112516001289953972194919901, −4.51069996493852308299678953803, −4.21986417870853949105608461912, −4.13487674822379063142720795821, −3.84253095331439363000355724291, −3.35523064947248809178457178706, −3.35435615715745318402713350051, −3.22152514804833536069259133054, −2.86952313007425926384788782466, −2.55801760219232205191435546537, −2.43156803345714958681548690246, −2.05536133869214462569544671309, −2.02190435125771342779680091526, −1.39285572197834043967516395348, −1.25405510463981728624149528695, −0.985970076253512030964467383754, −0.64810164510278354328469199958, 0.64810164510278354328469199958, 0.985970076253512030964467383754, 1.25405510463981728624149528695, 1.39285572197834043967516395348, 2.02190435125771342779680091526, 2.05536133869214462569544671309, 2.43156803345714958681548690246, 2.55801760219232205191435546537, 2.86952313007425926384788782466, 3.22152514804833536069259133054, 3.35435615715745318402713350051, 3.35523064947248809178457178706, 3.84253095331439363000355724291, 4.13487674822379063142720795821, 4.21986417870853949105608461912, 4.51069996493852308299678953803, 4.63112516001289953972194919901, 4.64534483487885840530721525383, 5.07153409069329517340915194154, 5.08055256612131778026644402121, 5.54001269221690852372945713596, 5.71770143118230883424237242428, 5.86629185944619482872825990953, 5.89644652236764756106245799314, 6.29410448524323304770776831846

Graph of the $Z$-function along the critical line