Properties

Label 8-364e4-1.1-c1e4-0-2
Degree $8$
Conductor $17555190016$
Sign $1$
Analytic cond. $71.3697$
Root an. cond. $1.70486$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 6·5-s − 2·7-s + 9-s + 3·11-s + 10·13-s − 6·15-s − 6·17-s − 19-s − 2·21-s − 12·23-s + 13·25-s − 4·27-s + 9·29-s − 4·31-s + 3·33-s + 12·35-s + 8·37-s + 10·39-s − 6·41-s + 5·43-s − 6·45-s − 12·47-s + 49-s − 6·51-s − 24·53-s − 18·55-s + ⋯
L(s)  = 1  + 0.577·3-s − 2.68·5-s − 0.755·7-s + 1/3·9-s + 0.904·11-s + 2.77·13-s − 1.54·15-s − 1.45·17-s − 0.229·19-s − 0.436·21-s − 2.50·23-s + 13/5·25-s − 0.769·27-s + 1.67·29-s − 0.718·31-s + 0.522·33-s + 2.02·35-s + 1.31·37-s + 1.60·39-s − 0.937·41-s + 0.762·43-s − 0.894·45-s − 1.75·47-s + 1/7·49-s − 0.840·51-s − 3.29·53-s − 2.42·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 7^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 7^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{8} \cdot 7^{4} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(71.3697\)
Root analytic conductor: \(1.70486\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{8} \cdot 7^{4} \cdot 13^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.5669861347\)
\(L(\frac12)\) \(\approx\) \(0.5669861347\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
7$C_2$ \( ( 1 + T + T^{2} )^{2} \)
13$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
good3$D_4\times C_2$ \( 1 - T + 5 T^{3} - 11 T^{4} + 5 p T^{5} - p^{3} T^{7} + p^{4} T^{8} \)
5$D_{4}$ \( ( 1 + 3 T + 7 T^{2} + 3 p T^{3} + p^{2} T^{4} )^{2} \)
11$D_4\times C_2$ \( 1 - 3 T - 10 T^{2} + 9 T^{3} + 141 T^{4} + 9 p T^{5} - 10 p^{2} T^{6} - 3 p^{3} T^{7} + p^{4} T^{8} \)
17$C_2^2$ \( ( 1 + 3 T - 8 T^{2} + 3 p T^{3} + p^{2} T^{4} )^{2} \)
19$D_4\times C_2$ \( 1 + T + 10 T^{2} - 47 T^{3} - 299 T^{4} - 47 p T^{5} + 10 p^{2} T^{6} + p^{3} T^{7} + p^{4} T^{8} \)
23$C_2^2$ \( ( 1 + 6 T + 13 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
29$D_4\times C_2$ \( 1 - 9 T + 8 T^{2} - 135 T^{3} + 2139 T^{4} - 135 p T^{5} + 8 p^{2} T^{6} - 9 p^{3} T^{7} + p^{4} T^{8} \)
31$C_2$ \( ( 1 + T + p T^{2} )^{4} \)
37$C_2^2$ \( ( 1 - 4 T - 21 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
41$D_4\times C_2$ \( 1 + 6 T - 34 T^{2} - 72 T^{3} + 1743 T^{4} - 72 p T^{5} - 34 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} \)
43$D_4\times C_2$ \( 1 - 5 T - 20 T^{2} + 205 T^{3} - 899 T^{4} + 205 p T^{5} - 20 p^{2} T^{6} - 5 p^{3} T^{7} + p^{4} T^{8} \)
47$D_{4}$ \( ( 1 + 6 T + 19 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
53$D_{4}$ \( ( 1 + 12 T + 121 T^{2} + 12 p T^{3} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 9 T + 22 T^{2} - 9 p T^{3} + p^{2} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 + 2 T - 57 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 - 7 T - 18 T^{2} - 7 p T^{3} + p^{2} T^{4} )^{2} \)
71$D_4\times C_2$ \( 1 + 6 T - 94 T^{2} - 72 T^{3} + 9303 T^{4} - 72 p T^{5} - 94 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} \)
73$C_2$ \( ( 1 - 14 T + p T^{2} )^{4} \)
79$C_2$ \( ( 1 + 4 T + p T^{2} )^{4} \)
83$C_2$ \( ( 1 + 9 T + p T^{2} )^{4} \)
89$D_4\times C_2$ \( 1 + 3 T - 124 T^{2} - 135 T^{3} + 8967 T^{4} - 135 p T^{5} - 124 p^{2} T^{6} + 3 p^{3} T^{7} + p^{4} T^{8} \)
97$D_4\times C_2$ \( 1 - 23 T + 250 T^{2} - 1955 T^{3} + 17119 T^{4} - 1955 p T^{5} + 250 p^{2} T^{6} - 23 p^{3} T^{7} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.389949470308854772880028733866, −7.958607983584704688710525782500, −7.921293429880098905389763300372, −7.74027022823604518844485983081, −7.52071530922316272284849211141, −6.86211201622641231065087748442, −6.74339628268830533111895161162, −6.50034053240271318757754577619, −6.36788658552930167537781036919, −6.32354088944258437282584434203, −5.66077331024911153162038227874, −5.63200636284629264049814443990, −5.02040077863399731901928291529, −4.51295236775985306777952248014, −4.47224557371159307375186829560, −4.08097707525387481797908406776, −3.77686019569163612792330940553, −3.72126341657009647447545791621, −3.56368384545481240758219465395, −3.33785266248429629243502448031, −2.55643446952333234602958275759, −2.35689805768859089583005864978, −1.65732336397060433724793382099, −1.26583832796705707694123099848, −0.31962908619490817082430572195, 0.31962908619490817082430572195, 1.26583832796705707694123099848, 1.65732336397060433724793382099, 2.35689805768859089583005864978, 2.55643446952333234602958275759, 3.33785266248429629243502448031, 3.56368384545481240758219465395, 3.72126341657009647447545791621, 3.77686019569163612792330940553, 4.08097707525387481797908406776, 4.47224557371159307375186829560, 4.51295236775985306777952248014, 5.02040077863399731901928291529, 5.63200636284629264049814443990, 5.66077331024911153162038227874, 6.32354088944258437282584434203, 6.36788658552930167537781036919, 6.50034053240271318757754577619, 6.74339628268830533111895161162, 6.86211201622641231065087748442, 7.52071530922316272284849211141, 7.74027022823604518844485983081, 7.921293429880098905389763300372, 7.958607983584704688710525782500, 8.389949470308854772880028733866

Graph of the $Z$-function along the critical line