Properties

Label 2-363-1.1-c7-0-35
Degree $2$
Conductor $363$
Sign $1$
Analytic cond. $113.395$
Root an. cond. $10.6487$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.63·2-s + 27·3-s − 121.·4-s + 254.·5-s − 71.0·6-s − 1.40e3·7-s + 655.·8-s + 729·9-s − 670.·10-s − 3.26e3·12-s + 1.38e4·13-s + 3.69e3·14-s + 6.87e3·15-s + 1.37e4·16-s + 1.70e4·17-s − 1.91e3·18-s − 1.55e4·19-s − 3.08e4·20-s − 3.78e4·21-s − 5.89e4·23-s + 1.77e4·24-s − 1.32e4·25-s − 3.64e4·26-s + 1.96e4·27-s + 1.69e5·28-s − 3.08e4·29-s − 1.81e4·30-s + ⋯
L(s)  = 1  − 0.232·2-s + 0.577·3-s − 0.945·4-s + 0.911·5-s − 0.134·6-s − 1.54·7-s + 0.452·8-s + 0.333·9-s − 0.212·10-s − 0.546·12-s + 1.75·13-s + 0.359·14-s + 0.526·15-s + 0.840·16-s + 0.841·17-s − 0.0775·18-s − 0.519·19-s − 0.861·20-s − 0.892·21-s − 1.00·23-s + 0.261·24-s − 0.169·25-s − 0.407·26-s + 0.192·27-s + 1.46·28-s − 0.234·29-s − 0.122·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(363\)    =    \(3 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(113.395\)
Root analytic conductor: \(10.6487\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 363,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(1.847087772\)
\(L(\frac12)\) \(\approx\) \(1.847087772\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 27T \)
11 \( 1 \)
good2 \( 1 + 2.63T + 128T^{2} \)
5 \( 1 - 254.T + 7.81e4T^{2} \)
7 \( 1 + 1.40e3T + 8.23e5T^{2} \)
13 \( 1 - 1.38e4T + 6.27e7T^{2} \)
17 \( 1 - 1.70e4T + 4.10e8T^{2} \)
19 \( 1 + 1.55e4T + 8.93e8T^{2} \)
23 \( 1 + 5.89e4T + 3.40e9T^{2} \)
29 \( 1 + 3.08e4T + 1.72e10T^{2} \)
31 \( 1 + 1.94e5T + 2.75e10T^{2} \)
37 \( 1 + 4.27e5T + 9.49e10T^{2} \)
41 \( 1 - 7.88e5T + 1.94e11T^{2} \)
43 \( 1 + 2.04e4T + 2.71e11T^{2} \)
47 \( 1 - 5.70e5T + 5.06e11T^{2} \)
53 \( 1 - 1.54e6T + 1.17e12T^{2} \)
59 \( 1 + 1.74e6T + 2.48e12T^{2} \)
61 \( 1 + 1.82e6T + 3.14e12T^{2} \)
67 \( 1 - 1.76e5T + 6.06e12T^{2} \)
71 \( 1 - 3.57e6T + 9.09e12T^{2} \)
73 \( 1 - 7.25e5T + 1.10e13T^{2} \)
79 \( 1 + 1.04e6T + 1.92e13T^{2} \)
83 \( 1 - 6.36e6T + 2.71e13T^{2} \)
89 \( 1 - 1.82e6T + 4.42e13T^{2} \)
97 \( 1 + 9.57e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.00940004781029497314564061689, −9.252498529717313391713792087532, −8.739130898800700154829004742483, −7.58125057833717488671059979508, −6.21729235479718120233249112720, −5.66818878997053419082380590413, −3.96151147286320475189843756349, −3.37043554430482354627082168670, −1.88177294572135039219714888053, −0.65359969783680061688184183840, 0.65359969783680061688184183840, 1.88177294572135039219714888053, 3.37043554430482354627082168670, 3.96151147286320475189843756349, 5.66818878997053419082380590413, 6.21729235479718120233249112720, 7.58125057833717488671059979508, 8.739130898800700154829004742483, 9.252498529717313391713792087532, 10.00940004781029497314564061689

Graph of the $Z$-function along the critical line