Properties

Label 2-363-1.1-c7-0-88
Degree $2$
Conductor $363$
Sign $-1$
Analytic cond. $113.395$
Root an. cond. $10.6487$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9.68·2-s + 27·3-s − 34.2·4-s − 195.·5-s − 261.·6-s + 946.·7-s + 1.57e3·8-s + 729·9-s + 1.88e3·10-s − 924.·12-s + 5.14e3·13-s − 9.16e3·14-s − 5.26e3·15-s − 1.08e4·16-s + 7.82e3·17-s − 7.05e3·18-s − 5.37e4·19-s + 6.68e3·20-s + 2.55e4·21-s − 1.05e5·23-s + 4.24e4·24-s − 4.00e4·25-s − 4.98e4·26-s + 1.96e4·27-s − 3.24e4·28-s + 9.19e4·29-s + 5.10e4·30-s + ⋯
L(s)  = 1  − 0.855·2-s + 0.577·3-s − 0.267·4-s − 0.698·5-s − 0.494·6-s + 1.04·7-s + 1.08·8-s + 0.333·9-s + 0.597·10-s − 0.154·12-s + 0.649·13-s − 0.892·14-s − 0.403·15-s − 0.660·16-s + 0.386·17-s − 0.285·18-s − 1.79·19-s + 0.186·20-s + 0.602·21-s − 1.79·23-s + 0.626·24-s − 0.512·25-s − 0.556·26-s + 0.192·27-s − 0.278·28-s + 0.700·29-s + 0.344·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(363\)    =    \(3 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(113.395\)
Root analytic conductor: \(10.6487\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 363,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 27T \)
11 \( 1 \)
good2 \( 1 + 9.68T + 128T^{2} \)
5 \( 1 + 195.T + 7.81e4T^{2} \)
7 \( 1 - 946.T + 8.23e5T^{2} \)
13 \( 1 - 5.14e3T + 6.27e7T^{2} \)
17 \( 1 - 7.82e3T + 4.10e8T^{2} \)
19 \( 1 + 5.37e4T + 8.93e8T^{2} \)
23 \( 1 + 1.05e5T + 3.40e9T^{2} \)
29 \( 1 - 9.19e4T + 1.72e10T^{2} \)
31 \( 1 - 3.70e4T + 2.75e10T^{2} \)
37 \( 1 - 5.27e5T + 9.49e10T^{2} \)
41 \( 1 - 3.41e5T + 1.94e11T^{2} \)
43 \( 1 - 1.37e5T + 2.71e11T^{2} \)
47 \( 1 - 1.72e4T + 5.06e11T^{2} \)
53 \( 1 - 1.24e6T + 1.17e12T^{2} \)
59 \( 1 - 2.67e5T + 2.48e12T^{2} \)
61 \( 1 + 2.12e6T + 3.14e12T^{2} \)
67 \( 1 + 6.48e5T + 6.06e12T^{2} \)
71 \( 1 - 4.28e6T + 9.09e12T^{2} \)
73 \( 1 + 4.34e6T + 1.10e13T^{2} \)
79 \( 1 + 5.09e6T + 1.92e13T^{2} \)
83 \( 1 - 1.53e6T + 2.71e13T^{2} \)
89 \( 1 + 9.14e6T + 4.42e13T^{2} \)
97 \( 1 + 3.30e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.677685911759446599763835032528, −8.503789870916303676394737296959, −8.211452385019848401883852184206, −7.50410666354818036860054732028, −6.03842327588279138100563679479, −4.43288043856130993804030569501, −4.02558095443849284972817936342, −2.25023820043809453282514338294, −1.21009666982804796945949999569, 0, 1.21009666982804796945949999569, 2.25023820043809453282514338294, 4.02558095443849284972817936342, 4.43288043856130993804030569501, 6.03842327588279138100563679479, 7.50410666354818036860054732028, 8.211452385019848401883852184206, 8.503789870916303676394737296959, 9.677685911759446599763835032528

Graph of the $Z$-function along the critical line