Properties

Label 2-363-1.1-c7-0-17
Degree $2$
Conductor $363$
Sign $1$
Analytic cond. $113.395$
Root an. cond. $10.6487$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 12.7·2-s − 27·3-s + 34.5·4-s − 425.·5-s − 344.·6-s + 1.13e3·7-s − 1.19e3·8-s + 729·9-s − 5.42e3·10-s − 932.·12-s − 6.59e3·13-s + 1.44e4·14-s + 1.14e4·15-s − 1.96e4·16-s − 1.57e4·17-s + 9.29e3·18-s − 2.12e4·19-s − 1.46e4·20-s − 3.06e4·21-s − 4.35e4·23-s + 3.21e4·24-s + 1.02e5·25-s − 8.40e4·26-s − 1.96e4·27-s + 3.92e4·28-s + 8.87e4·29-s + 1.46e5·30-s + ⋯
L(s)  = 1  + 1.12·2-s − 0.577·3-s + 0.269·4-s − 1.52·5-s − 0.650·6-s + 1.25·7-s − 0.822·8-s + 0.333·9-s − 1.71·10-s − 0.155·12-s − 0.832·13-s + 1.41·14-s + 0.878·15-s − 1.19·16-s − 0.777·17-s + 0.375·18-s − 0.712·19-s − 0.410·20-s − 0.722·21-s − 0.747·23-s + 0.474·24-s + 1.31·25-s − 0.937·26-s − 0.192·27-s + 0.337·28-s + 0.676·29-s + 0.989·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(363\)    =    \(3 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(113.395\)
Root analytic conductor: \(10.6487\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 363,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(1.215308454\)
\(L(\frac12)\) \(\approx\) \(1.215308454\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 27T \)
11 \( 1 \)
good2 \( 1 - 12.7T + 128T^{2} \)
5 \( 1 + 425.T + 7.81e4T^{2} \)
7 \( 1 - 1.13e3T + 8.23e5T^{2} \)
13 \( 1 + 6.59e3T + 6.27e7T^{2} \)
17 \( 1 + 1.57e4T + 4.10e8T^{2} \)
19 \( 1 + 2.12e4T + 8.93e8T^{2} \)
23 \( 1 + 4.35e4T + 3.40e9T^{2} \)
29 \( 1 - 8.87e4T + 1.72e10T^{2} \)
31 \( 1 + 3.13e5T + 2.75e10T^{2} \)
37 \( 1 - 2.58e5T + 9.49e10T^{2} \)
41 \( 1 - 2.47e5T + 1.94e11T^{2} \)
43 \( 1 - 5.05e5T + 2.71e11T^{2} \)
47 \( 1 + 9.54e5T + 5.06e11T^{2} \)
53 \( 1 - 1.48e6T + 1.17e12T^{2} \)
59 \( 1 + 1.98e6T + 2.48e12T^{2} \)
61 \( 1 + 2.43e6T + 3.14e12T^{2} \)
67 \( 1 + 3.17e6T + 6.06e12T^{2} \)
71 \( 1 - 5.61e6T + 9.09e12T^{2} \)
73 \( 1 - 4.69e6T + 1.10e13T^{2} \)
79 \( 1 - 3.40e6T + 1.92e13T^{2} \)
83 \( 1 - 8.75e6T + 2.71e13T^{2} \)
89 \( 1 - 7.64e6T + 4.42e13T^{2} \)
97 \( 1 + 9.08e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.83850549611257321569532376205, −9.201083176258129204203362788004, −8.128699477420845855102239196939, −7.37724497374555944958778928055, −6.19328338905384616392559643929, −4.95035866339314027451579591401, −4.49180937191508630942410224974, −3.68351727285483705519483468737, −2.18227747602148719040875368459, −0.43317232819016698139423845186, 0.43317232819016698139423845186, 2.18227747602148719040875368459, 3.68351727285483705519483468737, 4.49180937191508630942410224974, 4.95035866339314027451579591401, 6.19328338905384616392559643929, 7.37724497374555944958778928055, 8.128699477420845855102239196939, 9.201083176258129204203362788004, 10.83850549611257321569532376205

Graph of the $Z$-function along the critical line