L(s) = 1 | + (1.53 + 1.11i)2-s + (1.08 − 1.34i)3-s + (0.499 + 1.53i)4-s + (1.53 + 2.11i)5-s + (3.18 − 0.857i)6-s + (−0.690 + 0.224i)7-s + (0.224 − 0.690i)8-s + (−0.633 − 2.93i)9-s + 4.97i·10-s + (2.61 + 1.00i)12-s + (−1.80 + 2.48i)13-s + (−1.31 − 0.427i)14-s + (4.52 + 0.229i)15-s + (3.73 − 2.71i)16-s + (−2.12 + 1.54i)17-s + (2.30 − 5.22i)18-s + ⋯ |
L(s) = 1 | + (1.08 + 0.790i)2-s + (0.628 − 0.778i)3-s + (0.249 + 0.769i)4-s + (0.688 + 0.947i)5-s + (1.29 − 0.350i)6-s + (−0.261 + 0.0848i)7-s + (0.0793 − 0.244i)8-s + (−0.211 − 0.977i)9-s + 1.57i·10-s + (0.755 + 0.288i)12-s + (−0.501 + 0.690i)13-s + (−0.351 − 0.114i)14-s + (1.16 + 0.0593i)15-s + (0.934 − 0.678i)16-s + (−0.515 + 0.374i)17-s + (0.542 − 1.23i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.838 - 0.544i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.838 - 0.544i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.74967 + 0.814292i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.74967 + 0.814292i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.08 + 1.34i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-1.53 - 1.11i)T + (0.618 + 1.90i)T^{2} \) |
| 5 | \( 1 + (-1.53 - 2.11i)T + (-1.54 + 4.75i)T^{2} \) |
| 7 | \( 1 + (0.690 - 0.224i)T + (5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (1.80 - 2.48i)T + (-4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (2.12 - 1.54i)T + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (4.04 + 1.31i)T + (15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + 1.76iT - 23T^{2} \) |
| 29 | \( 1 + (-1.17 - 3.61i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (-0.690 - 0.502i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (-0.927 - 2.85i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (-0.951 + 2.92i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 + 1.62iT - 43T^{2} \) |
| 47 | \( 1 + (6.96 + 2.26i)T + (38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (-2.85 + 3.92i)T + (-16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (-2.48 + 0.809i)T + (47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (2.5 + 3.44i)T + (-18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + 8.32T + 67T^{2} \) |
| 71 | \( 1 + (-6.06 - 8.35i)T + (-21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (14.4 - 4.70i)T + (59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (-6.28 + 8.64i)T + (-24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-11.7 + 8.51i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 - 9.47iT - 89T^{2} \) |
| 97 | \( 1 + (-5.35 - 3.88i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.89734259537055625977149494394, −10.57751792706712548851631125025, −9.607650305622289500928437799782, −8.510150108323553953992926844078, −7.22666818541858779191447569579, −6.60697865676546294101231552863, −6.08580463822657725269627064478, −4.61508540997712200367672792801, −3.31182478484777482109723416886, −2.15695794138535898997767186750,
2.02504153201731218128099537840, 3.12298501473450541086909625309, 4.33692816221047858844447637049, 5.00596402827226760492594864492, 5.97194115760649828649417068043, 7.83324147258470131596984860799, 8.777639944257073760991319063124, 9.694712951745955250942957171260, 10.45329087346508335000978231406, 11.41431199280081424649148479627