| L(s) = 1 | + 4-s − 3·7-s − 13-s + 16-s − 3·19-s − 4·25-s − 3·28-s + 31-s + 2·37-s + 2·43-s + 4·49-s − 52-s + 3·61-s − 3·67-s − 2·73-s − 3·76-s − 7·79-s + 3·91-s − 5·97-s − 4·100-s + 3·103-s + 5·109-s − 3·112-s − 121-s + 124-s + 127-s + 131-s + ⋯ |
| L(s) = 1 | + 4-s − 3·7-s − 13-s + 16-s − 3·19-s − 4·25-s − 3·28-s + 31-s + 2·37-s + 2·43-s + 4·49-s − 52-s + 3·61-s − 3·67-s − 2·73-s − 3·76-s − 7·79-s + 3·91-s − 5·97-s − 4·100-s + 3·103-s + 5·109-s − 3·112-s − 121-s + 124-s + 127-s + 131-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{16} \cdot 13^{8} \cdot 31^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{16} \cdot 13^{8} \cdot 31^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.01339995565\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.01339995565\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 13 | \( 1 + T - T^{3} - T^{4} - T^{5} + T^{7} + T^{8} \) |
| 31 | \( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} \) |
| good | 2 | \( ( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} )( 1 + T - T^{3} - T^{4} - T^{5} + T^{7} + T^{8} ) \) |
| 5 | \( ( 1 - T + T^{2} )^{4}( 1 + T + T^{2} )^{4} \) |
| 7 | \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2}( 1 + T - T^{3} - T^{4} - T^{5} + T^{7} + T^{8} ) \) |
| 11 | \( 1 + T^{2} - T^{6} - T^{8} - T^{10} + T^{14} + T^{16} \) |
| 17 | \( ( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} )( 1 + T - T^{3} - T^{4} - T^{5} + T^{7} + T^{8} ) \) |
| 19 | \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2}( 1 + T - T^{3} - T^{4} - T^{5} + T^{7} + T^{8} ) \) |
| 23 | \( ( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} )( 1 + T - T^{3} - T^{4} - T^{5} + T^{7} + T^{8} ) \) |
| 29 | \( ( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} )( 1 + T - T^{3} - T^{4} - T^{5} + T^{7} + T^{8} ) \) |
| 37 | \( ( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} )^{2} \) |
| 41 | \( ( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} )( 1 + T - T^{3} - T^{4} - T^{5} + T^{7} + T^{8} ) \) |
| 43 | \( ( 1 - T + T^{2} )^{4}( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \) |
| 47 | \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \) |
| 53 | \( ( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} )( 1 + T - T^{3} - T^{4} - T^{5} + T^{7} + T^{8} ) \) |
| 59 | \( ( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} )( 1 + T - T^{3} - T^{4} - T^{5} + T^{7} + T^{8} ) \) |
| 61 | \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2}( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} ) \) |
| 67 | \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2}( 1 + T - T^{3} - T^{4} - T^{5} + T^{7} + T^{8} ) \) |
| 71 | \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \) |
| 73 | \( ( 1 + T - T^{3} - T^{4} - T^{5} + T^{7} + T^{8} )^{2} \) |
| 79 | \( ( 1 + T )^{8}( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} ) \) |
| 83 | \( 1 + T^{2} - T^{6} - T^{8} - T^{10} + T^{14} + T^{16} \) |
| 89 | \( 1 + T^{2} - T^{6} - T^{8} - T^{10} + T^{14} + T^{16} \) |
| 97 | \( ( 1 + T + T^{2} )^{4}( 1 + T - T^{3} - T^{4} - T^{5} + T^{7} + T^{8} ) \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−3.88180345881447827499367236554, −3.67061359410339818842833023615, −3.50261976228617090614988571153, −3.33957232403423178344577872674, −3.11084916493848097604344074725, −3.05347511119424936687371012937, −2.98677491332149868115025505495, −2.97512473185519346108129553671, −2.94508247828969019798361984865, −2.53875871296884542977697525632, −2.51718210174376601547771500046, −2.49140244006066644764465428318, −2.41360836780861101953759829356, −2.39494662845543476284909269522, −2.09251135373852284193191385591, −1.89487229226720484518813629903, −1.88539668157069122878263412005, −1.75979620585857502627144965104, −1.54294979728361107838139934850, −1.32663888891945927506916678267, −1.19438386724802193430088843545, −0.976678548477857021595940592447, −0.976301024633020810582688502248, −0.31684410256388412117139953941, −0.05124121472733967101378153411,
0.05124121472733967101378153411, 0.31684410256388412117139953941, 0.976301024633020810582688502248, 0.976678548477857021595940592447, 1.19438386724802193430088843545, 1.32663888891945927506916678267, 1.54294979728361107838139934850, 1.75979620585857502627144965104, 1.88539668157069122878263412005, 1.89487229226720484518813629903, 2.09251135373852284193191385591, 2.39494662845543476284909269522, 2.41360836780861101953759829356, 2.49140244006066644764465428318, 2.51718210174376601547771500046, 2.53875871296884542977697525632, 2.94508247828969019798361984865, 2.97512473185519346108129553671, 2.98677491332149868115025505495, 3.05347511119424936687371012937, 3.11084916493848097604344074725, 3.33957232403423178344577872674, 3.50261976228617090614988571153, 3.67061359410339818842833023615, 3.88180345881447827499367236554
Plot not available for L-functions of degree greater than 10.