| L(s) = 1 | + 4-s + 13-s + 16-s + 25-s − 31-s − 2·37-s + 49-s + 52-s + 64-s + 2·73-s + 100-s − 2·103-s + ⋯ |
| L(s) = 1 | + 4-s + 13-s + 16-s + 25-s − 31-s − 2·37-s + 49-s + 52-s + 64-s + 2·73-s + 100-s − 2·103-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3627 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3627 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.747834690\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.747834690\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 13 | \( 1 - T \) |
| 31 | \( 1 + T \) |
| good | 2 | \( ( 1 - T )( 1 + T ) \) |
| 5 | \( ( 1 - T )( 1 + T ) \) |
| 7 | \( ( 1 - T )( 1 + T ) \) |
| 11 | \( 1 + T^{2} \) |
| 17 | \( ( 1 - T )( 1 + T ) \) |
| 19 | \( ( 1 - T )( 1 + T ) \) |
| 23 | \( ( 1 - T )( 1 + T ) \) |
| 29 | \( ( 1 - T )( 1 + T ) \) |
| 37 | \( ( 1 + T )^{2} \) |
| 41 | \( ( 1 - T )( 1 + T ) \) |
| 43 | \( ( 1 - T )( 1 + T ) \) |
| 47 | \( ( 1 - T )( 1 + T ) \) |
| 53 | \( ( 1 - T )( 1 + T ) \) |
| 59 | \( ( 1 - T )( 1 + T ) \) |
| 61 | \( ( 1 - T )( 1 + T ) \) |
| 67 | \( ( 1 - T )( 1 + T ) \) |
| 71 | \( ( 1 - T )( 1 + T ) \) |
| 73 | \( ( 1 - T )^{2} \) |
| 79 | \( ( 1 - T )( 1 + T ) \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( ( 1 - T )( 1 + T ) \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.652780848713644008995791746949, −7.976268771300119578707015856030, −7.06930524813520474261456609102, −6.65762892363926092629995383948, −5.77313980255793759681157416402, −5.13246231122633836614835904404, −3.88106087403209776409078202112, −3.23020756453018667610569258898, −2.20687983029654535943934494562, −1.26208210814985655258980774138,
1.26208210814985655258980774138, 2.20687983029654535943934494562, 3.23020756453018667610569258898, 3.88106087403209776409078202112, 5.13246231122633836614835904404, 5.77313980255793759681157416402, 6.65762892363926092629995383948, 7.06930524813520474261456609102, 7.976268771300119578707015856030, 8.652780848713644008995791746949