Properties

Label 2-19e2-19.16-c1-0-19
Degree $2$
Conductor $361$
Sign $-0.932 - 0.360i$
Analytic cond. $2.88259$
Root an. cond. $1.69782$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.23 − 1.04i)2-s + (0.358 − 0.130i)3-s + (0.107 + 0.608i)4-s + (0.561 − 3.18i)5-s + (−0.580 − 0.211i)6-s + (−1.5 − 2.59i)7-s + (−1.11 + 1.93i)8-s + (−2.18 + 1.83i)9-s + (−4.01 + 3.36i)10-s + (0.809 − 1.40i)11-s + (0.118 + 0.204i)12-s + (−0.939 − 0.342i)13-s + (−0.842 + 4.78i)14-s + (−0.214 − 1.21i)15-s + (4.56 − 1.66i)16-s + (0.585 + 0.491i)17-s + ⋯
L(s)  = 1  + (−0.876 − 0.735i)2-s + (0.207 − 0.0754i)3-s + (0.0536 + 0.304i)4-s + (0.251 − 1.42i)5-s + (−0.237 − 0.0862i)6-s + (−0.566 − 0.981i)7-s + (−0.395 + 0.684i)8-s + (−0.728 + 0.611i)9-s + (−1.26 + 1.06i)10-s + (0.243 − 0.422i)11-s + (0.0340 + 0.0590i)12-s + (−0.260 − 0.0948i)13-s + (−0.225 + 1.27i)14-s + (−0.0554 − 0.314i)15-s + (1.14 − 0.415i)16-s + (0.141 + 0.119i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 361 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.932 - 0.360i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 361 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.932 - 0.360i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(361\)    =    \(19^{2}\)
Sign: $-0.932 - 0.360i$
Analytic conductor: \(2.88259\)
Root analytic conductor: \(1.69782\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{361} (54, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 361,\ (\ :1/2),\ -0.932 - 0.360i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.105774 + 0.567124i\)
\(L(\frac12)\) \(\approx\) \(0.105774 + 0.567124i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad19 \( 1 \)
good2 \( 1 + (1.23 + 1.04i)T + (0.347 + 1.96i)T^{2} \)
3 \( 1 + (-0.358 + 0.130i)T + (2.29 - 1.92i)T^{2} \)
5 \( 1 + (-0.561 + 3.18i)T + (-4.69 - 1.71i)T^{2} \)
7 \( 1 + (1.5 + 2.59i)T + (-3.5 + 6.06i)T^{2} \)
11 \( 1 + (-0.809 + 1.40i)T + (-5.5 - 9.52i)T^{2} \)
13 \( 1 + (0.939 + 0.342i)T + (9.95 + 8.35i)T^{2} \)
17 \( 1 + (-0.585 - 0.491i)T + (2.95 + 16.7i)T^{2} \)
23 \( 1 + (-0.934 - 5.30i)T + (-21.6 + 7.86i)T^{2} \)
29 \( 1 + (-2.77 + 2.32i)T + (5.03 - 28.5i)T^{2} \)
31 \( 1 + (4.42 + 7.66i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 + 8.85T + 37T^{2} \)
41 \( 1 + (2.81 - 1.02i)T + (31.4 - 26.3i)T^{2} \)
43 \( 1 + (0.0253 - 0.143i)T + (-40.4 - 14.7i)T^{2} \)
47 \( 1 + (-2.29 + 1.92i)T + (8.16 - 46.2i)T^{2} \)
53 \( 1 + (-1.09 - 6.23i)T + (-49.8 + 18.1i)T^{2} \)
59 \( 1 + (0.249 + 0.209i)T + (10.2 + 58.1i)T^{2} \)
61 \( 1 + (1.77 + 10.0i)T + (-57.3 + 20.8i)T^{2} \)
67 \( 1 + (-5.36 + 4.49i)T + (11.6 - 65.9i)T^{2} \)
71 \( 1 + (-1.29 + 7.35i)T + (-66.7 - 24.2i)T^{2} \)
73 \( 1 + (-2.54 + 0.926i)T + (55.9 - 46.9i)T^{2} \)
79 \( 1 + (-12.6 + 4.58i)T + (60.5 - 50.7i)T^{2} \)
83 \( 1 + (4.23 + 7.33i)T + (-41.5 + 71.8i)T^{2} \)
89 \( 1 + (7.29 + 2.65i)T + (68.1 + 57.2i)T^{2} \)
97 \( 1 + (10.6 + 8.90i)T + (16.8 + 95.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.80152260176112447409813029697, −9.874320961014032470525218082996, −9.183351413718264553400170391021, −8.440652578989670264753195287509, −7.56815037909768537775786675832, −5.89899032135861973095441074282, −4.98474786649367677796267908216, −3.45864395053766320899765730825, −1.84891675082409024603505887834, −0.49698717471709312770196467538, 2.63530042704481999450258990667, 3.48822452953603331859627292940, 5.59952889162458315627561617245, 6.69918136923951767091771264737, 6.93731308935070108080335229911, 8.407805146036732467861299428299, 9.044863075690111604648973112379, 9.877561923426979546814425920804, 10.71153593317077289289094803000, 12.01166799252400027323229885716

Graph of the $Z$-function along the critical line