Properties

Label 2-60e2-4.3-c2-0-15
Degree $2$
Conductor $3600$
Sign $-0.5 - 0.866i$
Analytic cond. $98.0928$
Root an. cond. $9.90418$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6.92i·7-s + 20.7i·11-s + 14·13-s − 6·17-s − 6.92i·19-s − 30·29-s + 20.7i·31-s − 26·37-s + 54·41-s + 20.7i·43-s + 41.5i·47-s + 1.00·49-s − 18·53-s − 20.7i·59-s − 70·61-s + ⋯
L(s)  = 1  − 0.989i·7-s + 1.88i·11-s + 1.07·13-s − 0.352·17-s − 0.364i·19-s − 1.03·29-s + 0.670i·31-s − 0.702·37-s + 1.31·41-s + 0.483i·43-s + 0.884i·47-s + 0.0204·49-s − 0.339·53-s − 0.352i·59-s − 1.14·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.5 - 0.866i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3600 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.5 - 0.866i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3600\)    =    \(2^{4} \cdot 3^{2} \cdot 5^{2}\)
Sign: $-0.5 - 0.866i$
Analytic conductor: \(98.0928\)
Root analytic conductor: \(9.90418\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{3600} (3151, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3600,\ (\ :1),\ -0.5 - 0.866i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.104504054\)
\(L(\frac12)\) \(\approx\) \(1.104504054\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 + 6.92iT - 49T^{2} \)
11 \( 1 - 20.7iT - 121T^{2} \)
13 \( 1 - 14T + 169T^{2} \)
17 \( 1 + 6T + 289T^{2} \)
19 \( 1 + 6.92iT - 361T^{2} \)
23 \( 1 - 529T^{2} \)
29 \( 1 + 30T + 841T^{2} \)
31 \( 1 - 20.7iT - 961T^{2} \)
37 \( 1 + 26T + 1.36e3T^{2} \)
41 \( 1 - 54T + 1.68e3T^{2} \)
43 \( 1 - 20.7iT - 1.84e3T^{2} \)
47 \( 1 - 41.5iT - 2.20e3T^{2} \)
53 \( 1 + 18T + 2.80e3T^{2} \)
59 \( 1 + 20.7iT - 3.48e3T^{2} \)
61 \( 1 + 70T + 3.72e3T^{2} \)
67 \( 1 + 117. iT - 4.48e3T^{2} \)
71 \( 1 - 83.1iT - 5.04e3T^{2} \)
73 \( 1 + 82T + 5.32e3T^{2} \)
79 \( 1 - 76.2iT - 6.24e3T^{2} \)
83 \( 1 - 20.7iT - 6.88e3T^{2} \)
89 \( 1 + 114T + 7.92e3T^{2} \)
97 \( 1 + 34T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.640319558997984224862061876454, −7.69396684445018309300259570279, −7.19296354124681964389049195463, −6.57988998958734997298936193586, −5.63510139712762159687404127870, −4.56469614363339078130256644831, −4.20434195282538967110093625526, −3.20112353829536528944775161019, −2.00316498352535072697552514832, −1.17601034565321495782504936832, 0.24298753165683321568356317817, 1.44060640897852131205676832981, 2.56831561782708642830384265904, 3.40748014142372333258362601166, 4.11130257710220584889673665459, 5.43992601337769134409495725624, 5.83612839677513949501907468566, 6.38752857374204609479597591773, 7.51684889118965450897388060599, 8.319786524871782816745601057951

Graph of the $Z$-function along the critical line