Properties

Label 2-60e2-20.3-c1-0-17
Degree $2$
Conductor $3600$
Sign $0.999 - 0.0299i$
Analytic cond. $28.7461$
Root an. cond. $5.36154$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.73 − 1.73i)7-s + 3.46i·11-s + (−1 − i)13-s + (1 − i)17-s + 6.92·19-s + (−1.73 + 1.73i)23-s − 4i·29-s + 3.46i·31-s + (−5 + 5i)37-s − 2·41-s + (1.73 − 1.73i)43-s + (1.73 + 1.73i)47-s − 1.00i·49-s + (−7 − 7i)53-s + 6.92·59-s + ⋯
L(s)  = 1  + (−0.654 − 0.654i)7-s + 1.04i·11-s + (−0.277 − 0.277i)13-s + (0.242 − 0.242i)17-s + 1.58·19-s + (−0.361 + 0.361i)23-s − 0.742i·29-s + 0.622i·31-s + (−0.821 + 0.821i)37-s − 0.312·41-s + (0.264 − 0.264i)43-s + (0.252 + 0.252i)47-s − 0.142i·49-s + (−0.961 − 0.961i)53-s + 0.901·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 - 0.0299i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 - 0.0299i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3600\)    =    \(2^{4} \cdot 3^{2} \cdot 5^{2}\)
Sign: $0.999 - 0.0299i$
Analytic conductor: \(28.7461\)
Root analytic conductor: \(5.36154\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3600} (2143, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3600,\ (\ :1/2),\ 0.999 - 0.0299i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.623140480\)
\(L(\frac12)\) \(\approx\) \(1.623140480\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 + (1.73 + 1.73i)T + 7iT^{2} \)
11 \( 1 - 3.46iT - 11T^{2} \)
13 \( 1 + (1 + i)T + 13iT^{2} \)
17 \( 1 + (-1 + i)T - 17iT^{2} \)
19 \( 1 - 6.92T + 19T^{2} \)
23 \( 1 + (1.73 - 1.73i)T - 23iT^{2} \)
29 \( 1 + 4iT - 29T^{2} \)
31 \( 1 - 3.46iT - 31T^{2} \)
37 \( 1 + (5 - 5i)T - 37iT^{2} \)
41 \( 1 + 2T + 41T^{2} \)
43 \( 1 + (-1.73 + 1.73i)T - 43iT^{2} \)
47 \( 1 + (-1.73 - 1.73i)T + 47iT^{2} \)
53 \( 1 + (7 + 7i)T + 53iT^{2} \)
59 \( 1 - 6.92T + 59T^{2} \)
61 \( 1 - 6T + 61T^{2} \)
67 \( 1 + (-5.19 - 5.19i)T + 67iT^{2} \)
71 \( 1 - 10.3iT - 71T^{2} \)
73 \( 1 + (-7 - 7i)T + 73iT^{2} \)
79 \( 1 + 79T^{2} \)
83 \( 1 + (-12.1 + 12.1i)T - 83iT^{2} \)
89 \( 1 + 8iT - 89T^{2} \)
97 \( 1 + (-7 + 7i)T - 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.520749060216176963033070559859, −7.60747629462591466962290146786, −7.17701346974444167643653588760, −6.47976300391014761415905092506, −5.42856745524698743047624218384, −4.83295756773629346027627424120, −3.78884765386839525239801075157, −3.14260951826558450475979736059, −2.00228595309067914745493579280, −0.77057843385744699762407684632, 0.71709893175084664728624092150, 2.08781156711979018576304519092, 3.12616143265236607968152943633, 3.64457100768756707626991856008, 4.88805879644487132858901770370, 5.64189578287351057105372654585, 6.19599517483342415407572699460, 7.06307892700023616535790132134, 7.84418364952545564573300211369, 8.598195907856926827542290100569

Graph of the $Z$-function along the critical line