L(s) = 1 | + (−1.18 + 2.05i)2-s + (−0.5 − 0.866i)3-s + (−1.81 − 3.13i)4-s + (−0.740 + 1.28i)5-s + 2.37·6-s + (2.18 − 1.49i)7-s + 3.85·8-s + (−0.499 + 0.866i)9-s + (−1.75 − 3.04i)10-s + (1.18 + 2.05i)11-s + (−1.81 + 3.13i)12-s + 3.22·13-s + (0.469 + 6.25i)14-s + 1.48·15-s + (−0.944 + 1.63i)16-s + (0.5 + 0.866i)17-s + ⋯ |
L(s) = 1 | + (−0.838 + 1.45i)2-s + (−0.288 − 0.499i)3-s + (−0.906 − 1.56i)4-s + (−0.331 + 0.573i)5-s + 0.968·6-s + (0.826 − 0.563i)7-s + 1.36·8-s + (−0.166 + 0.288i)9-s + (−0.555 − 0.962i)10-s + (0.357 + 0.619i)11-s + (−0.523 + 0.906i)12-s + 0.895·13-s + (0.125 + 1.67i)14-s + 0.382·15-s + (−0.236 + 0.409i)16-s + (0.121 + 0.210i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 357 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.614 - 0.788i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 357 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.614 - 0.788i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.319260 + 0.653479i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.319260 + 0.653479i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.5 + 0.866i)T \) |
| 7 | \( 1 + (-2.18 + 1.49i)T \) |
| 17 | \( 1 + (-0.5 - 0.866i)T \) |
good | 2 | \( 1 + (1.18 - 2.05i)T + (-1 - 1.73i)T^{2} \) |
| 5 | \( 1 + (0.740 - 1.28i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-1.18 - 2.05i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 3.22T + 13T^{2} \) |
| 19 | \( 1 + (3.05 - 5.28i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (1.92 - 3.33i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 2.08T + 29T^{2} \) |
| 31 | \( 1 + (-1.11 - 1.93i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (1.87 - 3.24i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 9.80T + 41T^{2} \) |
| 43 | \( 1 + 4.55T + 43T^{2} \) |
| 47 | \( 1 + (-0.867 + 1.50i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-4.06 - 7.04i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (5.68 + 9.85i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.65 + 6.33i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-7.44 - 12.9i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 5.87T + 71T^{2} \) |
| 73 | \( 1 + (-5.56 - 9.63i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (3.83 - 6.64i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 3.97T + 83T^{2} \) |
| 89 | \( 1 + (-2.19 + 3.79i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 12.4T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.55273320664263927779605137463, −10.71498929633613864552098648688, −9.797770884756152730380307517951, −8.540967894638894757107614086033, −7.88059274533604757231530437580, −7.14795530480445676998593029969, −6.36412872375964516260366682592, −5.38030862825009342053722633210, −3.94649660806114892640753499280, −1.44321388345946621322416365088,
0.78185345525297621580742082947, 2.37966653603208147607110501002, 3.80255612589950436935239634392, 4.76313918271292142923204668836, 6.15528551224652407691585324321, 7.998269313527799663319765042263, 8.792135779660358517762446546042, 9.164208797460418355657091950571, 10.50034013884421935969255024708, 11.09422007938116410373083058906