Properties

Label 2-357-357.26-c1-0-28
Degree $2$
Conductor $357$
Sign $0.0451 + 0.998i$
Analytic cond. $2.85065$
Root an. cond. $1.68838$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2.15 + 0.577i)2-s + (0.879 − 1.49i)3-s + (2.57 − 1.48i)4-s + (0.469 + 0.611i)5-s + (−1.03 + 3.72i)6-s + (0.376 − 2.61i)7-s + (−1.53 + 1.53i)8-s + (−1.45 − 2.62i)9-s + (−1.36 − 1.04i)10-s + (0.745 − 0.971i)11-s + (0.0466 − 5.14i)12-s − 0.918·13-s + (0.700 + 5.85i)14-s + (1.32 − 0.162i)15-s + (−0.558 + 0.966i)16-s + (4.12 − 0.0634i)17-s + ⋯
L(s)  = 1  + (−1.52 + 0.408i)2-s + (0.507 − 0.861i)3-s + (1.28 − 0.742i)4-s + (0.209 + 0.273i)5-s + (−0.421 + 1.51i)6-s + (0.142 − 0.989i)7-s + (−0.541 + 0.541i)8-s + (−0.484 − 0.874i)9-s + (−0.430 − 0.330i)10-s + (0.224 − 0.293i)11-s + (0.0134 − 1.48i)12-s − 0.254·13-s + (0.187 + 1.56i)14-s + (0.342 − 0.0418i)15-s + (−0.139 + 0.241i)16-s + (0.999 − 0.0153i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 357 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0451 + 0.998i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 357 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0451 + 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(357\)    =    \(3 \cdot 7 \cdot 17\)
Sign: $0.0451 + 0.998i$
Analytic conductor: \(2.85065\)
Root analytic conductor: \(1.68838\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{357} (26, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 357,\ (\ :1/2),\ 0.0451 + 0.998i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.508973 - 0.486495i\)
\(L(\frac12)\) \(\approx\) \(0.508973 - 0.486495i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-0.879 + 1.49i)T \)
7 \( 1 + (-0.376 + 2.61i)T \)
17 \( 1 + (-4.12 + 0.0634i)T \)
good2 \( 1 + (2.15 - 0.577i)T + (1.73 - i)T^{2} \)
5 \( 1 + (-0.469 - 0.611i)T + (-1.29 + 4.82i)T^{2} \)
11 \( 1 + (-0.745 + 0.971i)T + (-2.84 - 10.6i)T^{2} \)
13 \( 1 + 0.918T + 13T^{2} \)
19 \( 1 + (2.96 - 0.795i)T + (16.4 - 9.5i)T^{2} \)
23 \( 1 + (4.99 + 0.657i)T + (22.2 + 5.95i)T^{2} \)
29 \( 1 + (-0.788 - 0.326i)T + (20.5 + 20.5i)T^{2} \)
31 \( 1 + (1.56 - 0.206i)T + (29.9 - 8.02i)T^{2} \)
37 \( 1 + (-6.94 + 5.32i)T + (9.57 - 35.7i)T^{2} \)
41 \( 1 + (3.83 + 9.25i)T + (-28.9 + 28.9i)T^{2} \)
43 \( 1 + (-0.699 - 0.699i)T + 43iT^{2} \)
47 \( 1 + (-7.53 - 4.35i)T + (23.5 + 40.7i)T^{2} \)
53 \( 1 + (-0.572 + 2.13i)T + (-45.8 - 26.5i)T^{2} \)
59 \( 1 + (-0.0323 + 0.120i)T + (-51.0 - 29.5i)T^{2} \)
61 \( 1 + (-1.42 + 10.8i)T + (-58.9 - 15.7i)T^{2} \)
67 \( 1 + (1.45 + 2.51i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 + (3.39 - 8.19i)T + (-50.2 - 50.2i)T^{2} \)
73 \( 1 + (-0.172 - 1.30i)T + (-70.5 + 18.8i)T^{2} \)
79 \( 1 + (0.899 - 6.83i)T + (-76.3 - 20.4i)T^{2} \)
83 \( 1 + (4.23 - 4.23i)T - 83iT^{2} \)
89 \( 1 + (-12.1 - 7.00i)T + (44.5 + 77.0i)T^{2} \)
97 \( 1 + (-16.2 - 6.71i)T + (68.5 + 68.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.83672391193893020440476922919, −10.13486047330624698967707346916, −9.249401396391151898712455024950, −8.239846982688456863843467475742, −7.67336395755715725394894491048, −6.85080773280392889041327214469, −6.01696177026214987968317229972, −3.87831588993813079648948220355, −2.15403941832628143942866019362, −0.75803216711244339119969791942, 1.84287532478664210269107558125, 2.99174042780858033164659967217, 4.65622499182104979804045454740, 5.86258983691009522143014921644, 7.52454973174985172693125324325, 8.359494659406048753296737252390, 9.035054607634755367139420123260, 9.741368225889963732784635706351, 10.34246962677043626475567793721, 11.43201195336406332691598172771

Graph of the $Z$-function along the critical line