Properties

Label 16-354e8-1.1-c5e8-0-0
Degree $16$
Conductor $2.466\times 10^{20}$
Sign $1$
Analytic cond. $1.07971\times 10^{14}$
Root an. cond. $7.53497$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 32·2-s + 72·3-s + 576·4-s + 40·5-s − 2.30e3·6-s + 181·7-s − 7.68e3·8-s + 2.91e3·9-s − 1.28e3·10-s − 349·11-s + 4.14e4·12-s + 121·13-s − 5.79e3·14-s + 2.88e3·15-s + 8.44e4·16-s + 437·17-s − 9.33e4·18-s + 1.31e3·19-s + 2.30e4·20-s + 1.30e4·21-s + 1.11e4·22-s + 1.22e3·23-s − 5.52e5·24-s − 6.90e3·25-s − 3.87e3·26-s + 8.74e4·27-s + 1.04e5·28-s + ⋯
L(s)  = 1  − 5.65·2-s + 4.61·3-s + 18·4-s + 0.715·5-s − 26.1·6-s + 1.39·7-s − 42.4·8-s + 12·9-s − 4.04·10-s − 0.869·11-s + 83.1·12-s + 0.198·13-s − 7.89·14-s + 3.30·15-s + 82.5·16-s + 0.366·17-s − 67.8·18-s + 0.835·19-s + 12.8·20-s + 6.44·21-s + 4.91·22-s + 0.482·23-s − 195.·24-s − 2.20·25-s − 1.12·26-s + 23.0·27-s + 25.1·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{8} \cdot 59^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(6-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{8} \cdot 59^{8}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{8} \cdot 3^{8} \cdot 59^{8}\)
Sign: $1$
Analytic conductor: \(1.07971\times 10^{14}\)
Root analytic conductor: \(7.53497\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{8} \cdot 3^{8} \cdot 59^{8} ,\ ( \ : [5/2]^{8} ),\ 1 )\)

Particular Values

\(L(3)\) \(\approx\) \(42.39735958\)
\(L(\frac12)\) \(\approx\) \(42.39735958\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( ( 1 + p^{2} T )^{8} \)
3 \( ( 1 - p^{2} T )^{8} \)
59 \( ( 1 + p^{2} T )^{8} \)
good5 \( 1 - 8 p T + 8504 T^{2} - 104024 p T^{3} + 2386749 p^{2} T^{4} - 2798916964 T^{5} + 57941562426 p T^{6} - 12796594420536 T^{7} + 197688164553096 p T^{8} - 12796594420536 p^{5} T^{9} + 57941562426 p^{11} T^{10} - 2798916964 p^{15} T^{11} + 2386749 p^{22} T^{12} - 104024 p^{26} T^{13} + 8504 p^{30} T^{14} - 8 p^{36} T^{15} + p^{40} T^{16} \)
7 \( 1 - 181 T + 67461 T^{2} - 9892052 T^{3} + 2423948973 T^{4} - 289231322385 T^{5} + 59118760030031 T^{6} - 6163059060934086 T^{7} + 1093950555545508924 T^{8} - 6163059060934086 p^{5} T^{9} + 59118760030031 p^{10} T^{10} - 289231322385 p^{15} T^{11} + 2423948973 p^{20} T^{12} - 9892052 p^{25} T^{13} + 67461 p^{30} T^{14} - 181 p^{35} T^{15} + p^{40} T^{16} \)
11 \( 1 + 349 T + 122126 T^{2} + 70703823 T^{3} + 33321533325 T^{4} + 1126998711420 T^{5} + 4669466302351938 T^{6} + 139937213293060958 T^{7} - \)\(37\!\cdots\!28\)\( T^{8} + 139937213293060958 p^{5} T^{9} + 4669466302351938 p^{10} T^{10} + 1126998711420 p^{15} T^{11} + 33321533325 p^{20} T^{12} + 70703823 p^{25} T^{13} + 122126 p^{30} T^{14} + 349 p^{35} T^{15} + p^{40} T^{16} \)
13 \( 1 - 121 T + 846460 T^{2} + 112928157 T^{3} + 533561024677 T^{4} + 89208888643718 T^{5} + 114398412597198 p^{3} T^{6} + 48047483865079710548 T^{7} + \)\(10\!\cdots\!08\)\( T^{8} + 48047483865079710548 p^{5} T^{9} + 114398412597198 p^{13} T^{10} + 89208888643718 p^{15} T^{11} + 533561024677 p^{20} T^{12} + 112928157 p^{25} T^{13} + 846460 p^{30} T^{14} - 121 p^{35} T^{15} + p^{40} T^{16} \)
17 \( 1 - 437 T + 6178475 T^{2} - 628998414 T^{3} + 16702414173175 T^{4} + 5321014955001245 T^{5} + 27784663529318999503 T^{6} + \)\(12\!\cdots\!30\)\( p T^{7} + \)\(38\!\cdots\!08\)\( T^{8} + \)\(12\!\cdots\!30\)\( p^{6} T^{9} + 27784663529318999503 p^{10} T^{10} + 5321014955001245 p^{15} T^{11} + 16702414173175 p^{20} T^{12} - 628998414 p^{25} T^{13} + 6178475 p^{30} T^{14} - 437 p^{35} T^{15} + p^{40} T^{16} \)
19 \( 1 - 1314 T + 4486835 T^{2} - 4616460772 T^{3} + 10740206540335 T^{4} - 246771516185304 T^{5} + 28358212355592059749 T^{6} - \)\(61\!\cdots\!74\)\( p T^{7} + \)\(71\!\cdots\!16\)\( T^{8} - \)\(61\!\cdots\!74\)\( p^{6} T^{9} + 28358212355592059749 p^{10} T^{10} - 246771516185304 p^{15} T^{11} + 10740206540335 p^{20} T^{12} - 4616460772 p^{25} T^{13} + 4486835 p^{30} T^{14} - 1314 p^{35} T^{15} + p^{40} T^{16} \)
23 \( 1 - 1224 T + 19682419 T^{2} - 59494382352 T^{3} + 232822981573843 T^{4} - 877742564623226318 T^{5} + \)\(24\!\cdots\!33\)\( T^{6} - \)\(72\!\cdots\!94\)\( T^{7} + \)\(19\!\cdots\!52\)\( T^{8} - \)\(72\!\cdots\!94\)\( p^{5} T^{9} + \)\(24\!\cdots\!33\)\( p^{10} T^{10} - 877742564623226318 p^{15} T^{11} + 232822981573843 p^{20} T^{12} - 59494382352 p^{25} T^{13} + 19682419 p^{30} T^{14} - 1224 p^{35} T^{15} + p^{40} T^{16} \)
29 \( 1 - 5276 T + 120347145 T^{2} - 519562891984 T^{3} + 6685962672788573 T^{4} - 24951322159105668810 T^{5} + \)\(23\!\cdots\!53\)\( T^{6} - \)\(76\!\cdots\!14\)\( T^{7} + \)\(57\!\cdots\!16\)\( T^{8} - \)\(76\!\cdots\!14\)\( p^{5} T^{9} + \)\(23\!\cdots\!53\)\( p^{10} T^{10} - 24951322159105668810 p^{15} T^{11} + 6685962672788573 p^{20} T^{12} - 519562891984 p^{25} T^{13} + 120347145 p^{30} T^{14} - 5276 p^{35} T^{15} + p^{40} T^{16} \)
31 \( 1 - 18332 T + 279390857 T^{2} - 2773929641840 T^{3} + 25138456105649665 T^{4} - \)\(18\!\cdots\!22\)\( T^{5} + \)\(12\!\cdots\!25\)\( T^{6} - \)\(72\!\cdots\!10\)\( T^{7} + \)\(41\!\cdots\!12\)\( T^{8} - \)\(72\!\cdots\!10\)\( p^{5} T^{9} + \)\(12\!\cdots\!25\)\( p^{10} T^{10} - \)\(18\!\cdots\!22\)\( p^{15} T^{11} + 25138456105649665 p^{20} T^{12} - 2773929641840 p^{25} T^{13} + 279390857 p^{30} T^{14} - 18332 p^{35} T^{15} + p^{40} T^{16} \)
37 \( 1 - 30331 T + 548674127 T^{2} - 6260413811688 T^{3} + 50261654595468395 T^{4} - \)\(20\!\cdots\!93\)\( T^{5} - \)\(69\!\cdots\!09\)\( T^{6} + \)\(24\!\cdots\!62\)\( T^{7} - \)\(25\!\cdots\!96\)\( T^{8} + \)\(24\!\cdots\!62\)\( p^{5} T^{9} - \)\(69\!\cdots\!09\)\( p^{10} T^{10} - \)\(20\!\cdots\!93\)\( p^{15} T^{11} + 50261654595468395 p^{20} T^{12} - 6260413811688 p^{25} T^{13} + 548674127 p^{30} T^{14} - 30331 p^{35} T^{15} + p^{40} T^{16} \)
41 \( 1 - 203 p T + 440632323 T^{2} - 2080137597310 T^{3} + 83527120831659931 T^{4} - \)\(17\!\cdots\!13\)\( T^{5} + \)\(11\!\cdots\!31\)\( T^{6} - \)\(12\!\cdots\!34\)\( T^{7} + \)\(15\!\cdots\!68\)\( T^{8} - \)\(12\!\cdots\!34\)\( p^{5} T^{9} + \)\(11\!\cdots\!31\)\( p^{10} T^{10} - \)\(17\!\cdots\!13\)\( p^{15} T^{11} + 83527120831659931 p^{20} T^{12} - 2080137597310 p^{25} T^{13} + 440632323 p^{30} T^{14} - 203 p^{36} T^{15} + p^{40} T^{16} \)
43 \( 1 - 30851 T + 568988378 T^{2} - 6835447690989 T^{3} + 80161577163755029 T^{4} - \)\(94\!\cdots\!00\)\( T^{5} + \)\(11\!\cdots\!14\)\( T^{6} - \)\(11\!\cdots\!54\)\( T^{7} + \)\(13\!\cdots\!40\)\( T^{8} - \)\(11\!\cdots\!54\)\( p^{5} T^{9} + \)\(11\!\cdots\!14\)\( p^{10} T^{10} - \)\(94\!\cdots\!00\)\( p^{15} T^{11} + 80161577163755029 p^{20} T^{12} - 6835447690989 p^{25} T^{13} + 568988378 p^{30} T^{14} - 30851 p^{35} T^{15} + p^{40} T^{16} \)
47 \( 1 + 5730 T + 1464206575 T^{2} + 6492511544740 T^{3} + 988007165486358391 T^{4} + \)\(34\!\cdots\!20\)\( T^{5} + \)\(40\!\cdots\!33\)\( T^{6} + \)\(11\!\cdots\!70\)\( T^{7} + \)\(11\!\cdots\!84\)\( T^{8} + \)\(11\!\cdots\!70\)\( p^{5} T^{9} + \)\(40\!\cdots\!33\)\( p^{10} T^{10} + \)\(34\!\cdots\!20\)\( p^{15} T^{11} + 988007165486358391 p^{20} T^{12} + 6492511544740 p^{25} T^{13} + 1464206575 p^{30} T^{14} + 5730 p^{35} T^{15} + p^{40} T^{16} \)
53 \( 1 + 33524 T + 1747306888 T^{2} + 48715831517332 T^{3} + 1668053845032520149 T^{4} + \)\(36\!\cdots\!32\)\( T^{5} + \)\(10\!\cdots\!70\)\( T^{6} + \)\(19\!\cdots\!44\)\( T^{7} + \)\(47\!\cdots\!28\)\( T^{8} + \)\(19\!\cdots\!44\)\( p^{5} T^{9} + \)\(10\!\cdots\!70\)\( p^{10} T^{10} + \)\(36\!\cdots\!32\)\( p^{15} T^{11} + 1668053845032520149 p^{20} T^{12} + 48715831517332 p^{25} T^{13} + 1747306888 p^{30} T^{14} + 33524 p^{35} T^{15} + p^{40} T^{16} \)
61 \( 1 - 2692 T + 1133091389 T^{2} + 19410288614052 T^{3} + 1152654601890298913 T^{4} + \)\(27\!\cdots\!46\)\( T^{5} + \)\(14\!\cdots\!61\)\( T^{6} + \)\(20\!\cdots\!02\)\( T^{7} + \)\(14\!\cdots\!92\)\( T^{8} + \)\(20\!\cdots\!02\)\( p^{5} T^{9} + \)\(14\!\cdots\!61\)\( p^{10} T^{10} + \)\(27\!\cdots\!46\)\( p^{15} T^{11} + 1152654601890298913 p^{20} T^{12} + 19410288614052 p^{25} T^{13} + 1133091389 p^{30} T^{14} - 2692 p^{35} T^{15} + p^{40} T^{16} \)
67 \( 1 - 56244 T + 8691271934 T^{2} - 378436126716392 T^{3} + 33134061431713851601 T^{4} - \)\(11\!\cdots\!24\)\( T^{5} + \)\(76\!\cdots\!18\)\( T^{6} - \)\(22\!\cdots\!60\)\( T^{7} + \)\(12\!\cdots\!48\)\( T^{8} - \)\(22\!\cdots\!60\)\( p^{5} T^{9} + \)\(76\!\cdots\!18\)\( p^{10} T^{10} - \)\(11\!\cdots\!24\)\( p^{15} T^{11} + 33134061431713851601 p^{20} T^{12} - 378436126716392 p^{25} T^{13} + 8691271934 p^{30} T^{14} - 56244 p^{35} T^{15} + p^{40} T^{16} \)
71 \( 1 + 48473 T + 6111973610 T^{2} + 181218191676205 T^{3} + 13169627769687621105 T^{4} + \)\(28\!\cdots\!78\)\( T^{5} + \)\(21\!\cdots\!70\)\( T^{6} + \)\(59\!\cdots\!96\)\( T^{7} + \)\(41\!\cdots\!88\)\( T^{8} + \)\(59\!\cdots\!96\)\( p^{5} T^{9} + \)\(21\!\cdots\!70\)\( p^{10} T^{10} + \)\(28\!\cdots\!78\)\( p^{15} T^{11} + 13169627769687621105 p^{20} T^{12} + 181218191676205 p^{25} T^{13} + 6111973610 p^{30} T^{14} + 48473 p^{35} T^{15} + p^{40} T^{16} \)
73 \( 1 + 30796 T + 9332221467 T^{2} + 230495673493944 T^{3} + 45125935310221121367 T^{4} + \)\(92\!\cdots\!50\)\( T^{5} + \)\(14\!\cdots\!93\)\( T^{6} + \)\(26\!\cdots\!66\)\( T^{7} + \)\(35\!\cdots\!72\)\( T^{8} + \)\(26\!\cdots\!66\)\( p^{5} T^{9} + \)\(14\!\cdots\!93\)\( p^{10} T^{10} + \)\(92\!\cdots\!50\)\( p^{15} T^{11} + 45125935310221121367 p^{20} T^{12} + 230495673493944 p^{25} T^{13} + 9332221467 p^{30} T^{14} + 30796 p^{35} T^{15} + p^{40} T^{16} \)
79 \( 1 - 135513 T + 18676864638 T^{2} - 1530707055977023 T^{3} + \)\(13\!\cdots\!41\)\( T^{4} - \)\(88\!\cdots\!88\)\( T^{5} + \)\(63\!\cdots\!50\)\( T^{6} - \)\(37\!\cdots\!74\)\( T^{7} + \)\(22\!\cdots\!48\)\( T^{8} - \)\(37\!\cdots\!74\)\( p^{5} T^{9} + \)\(63\!\cdots\!50\)\( p^{10} T^{10} - \)\(88\!\cdots\!88\)\( p^{15} T^{11} + \)\(13\!\cdots\!41\)\( p^{20} T^{12} - 1530707055977023 p^{25} T^{13} + 18676864638 p^{30} T^{14} - 135513 p^{35} T^{15} + p^{40} T^{16} \)
83 \( 1 + 88111 T + 17697816553 T^{2} + 1222138870912344 T^{3} + \)\(13\!\cdots\!93\)\( T^{4} + \)\(65\!\cdots\!47\)\( T^{5} + \)\(56\!\cdots\!83\)\( T^{6} + \)\(20\!\cdots\!02\)\( T^{7} + \)\(20\!\cdots\!00\)\( T^{8} + \)\(20\!\cdots\!02\)\( p^{5} T^{9} + \)\(56\!\cdots\!83\)\( p^{10} T^{10} + \)\(65\!\cdots\!47\)\( p^{15} T^{11} + \)\(13\!\cdots\!93\)\( p^{20} T^{12} + 1222138870912344 p^{25} T^{13} + 17697816553 p^{30} T^{14} + 88111 p^{35} T^{15} + p^{40} T^{16} \)
89 \( 1 + 112196 T + 40637731439 T^{2} + 3860370625219228 T^{3} + \)\(74\!\cdots\!47\)\( T^{4} + \)\(59\!\cdots\!06\)\( T^{5} + \)\(79\!\cdots\!69\)\( T^{6} + \)\(52\!\cdots\!46\)\( T^{7} + \)\(54\!\cdots\!32\)\( T^{8} + \)\(52\!\cdots\!46\)\( p^{5} T^{9} + \)\(79\!\cdots\!69\)\( p^{10} T^{10} + \)\(59\!\cdots\!06\)\( p^{15} T^{11} + \)\(74\!\cdots\!47\)\( p^{20} T^{12} + 3860370625219228 p^{25} T^{13} + 40637731439 p^{30} T^{14} + 112196 p^{35} T^{15} + p^{40} T^{16} \)
97 \( 1 - 551378 T + 180167225154 T^{2} - 42331218717830270 T^{3} + \)\(79\!\cdots\!29\)\( T^{4} - \)\(12\!\cdots\!60\)\( T^{5} + \)\(16\!\cdots\!70\)\( T^{6} - \)\(18\!\cdots\!00\)\( T^{7} + \)\(18\!\cdots\!00\)\( T^{8} - \)\(18\!\cdots\!00\)\( p^{5} T^{9} + \)\(16\!\cdots\!70\)\( p^{10} T^{10} - \)\(12\!\cdots\!60\)\( p^{15} T^{11} + \)\(79\!\cdots\!29\)\( p^{20} T^{12} - 42331218717830270 p^{25} T^{13} + 180167225154 p^{30} T^{14} - 551378 p^{35} T^{15} + p^{40} T^{16} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.27746453577740975986163600381, −3.57738351462937076435320000619, −3.49983333155034884118926646214, −3.28673411664643633230897586842, −3.26079474914030919012078921432, −3.21777056272658025209957139884, −3.16907539455355514408896799157, −3.08101222642242072085131275188, −2.82500372628891661381315243277, −2.36377428000811210231070817460, −2.33799920817072853031705980069, −2.25939083377184597495551563696, −2.17066755517710263296614070942, −2.06411370077768744735633129666, −2.01946004657108576300166964154, −1.84193995041294320823130051026, −1.72540796866835693752472301473, −1.35892464248783765430435506664, −1.09614368871244646810692162557, −1.00046571064026382839507143001, −0.907962163103421948068823382700, −0.840419447899868420277584153077, −0.64742747664962300051704188304, −0.54853685837184151296879069392, −0.30335750636737648542134154605, 0.30335750636737648542134154605, 0.54853685837184151296879069392, 0.64742747664962300051704188304, 0.840419447899868420277584153077, 0.907962163103421948068823382700, 1.00046571064026382839507143001, 1.09614368871244646810692162557, 1.35892464248783765430435506664, 1.72540796866835693752472301473, 1.84193995041294320823130051026, 2.01946004657108576300166964154, 2.06411370077768744735633129666, 2.17066755517710263296614070942, 2.25939083377184597495551563696, 2.33799920817072853031705980069, 2.36377428000811210231070817460, 2.82500372628891661381315243277, 3.08101222642242072085131275188, 3.16907539455355514408896799157, 3.21777056272658025209957139884, 3.26079474914030919012078921432, 3.28673411664643633230897586842, 3.49983333155034884118926646214, 3.57738351462937076435320000619, 4.27746453577740975986163600381

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.