Properties

Label 4-3536e2-1.1-c0e2-0-9
Degree $4$
Conductor $12503296$
Sign $1$
Analytic cond. $3.11414$
Root an. cond. $1.32841$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·13-s + 2·17-s + 4·19-s + 4·47-s + 2·49-s − 4·59-s − 81-s + 2·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 3·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s − 4·221-s + ⋯
L(s)  = 1  − 2·13-s + 2·17-s + 4·19-s + 4·47-s + 2·49-s − 4·59-s − 81-s + 2·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 3·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s − 4·221-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 12503296 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 12503296 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(12503296\)    =    \(2^{8} \cdot 13^{2} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(3.11414\)
Root analytic conductor: \(1.32841\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 12503296,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.719149484\)
\(L(\frac12)\) \(\approx\) \(1.719149484\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
13$C_1$ \( ( 1 + T )^{2} \)
17$C_1$ \( ( 1 - T )^{2} \)
good3$C_2^2$ \( 1 + T^{4} \)
5$C_2^2$ \( 1 + T^{4} \)
7$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
11$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
19$C_1$ \( ( 1 - T )^{4} \)
23$C_2^2$ \( 1 + T^{4} \)
29$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
31$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
37$C_2^2$ \( 1 + T^{4} \)
41$C_2^2$ \( 1 + T^{4} \)
43$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
47$C_1$ \( ( 1 - T )^{4} \)
53$C_2$ \( ( 1 + T^{2} )^{2} \)
59$C_1$ \( ( 1 + T )^{4} \)
61$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
67$C_2$ \( ( 1 + T^{2} )^{2} \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
73$C_2^2$ \( 1 + T^{4} \)
79$C_2^2$ \( 1 + T^{4} \)
83$C_2$ \( ( 1 + T^{2} )^{2} \)
89$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
97$C_2^2$ \( 1 + T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.063309784625067404324276022961, −8.675637823845772098176674196827, −7.84328873052770445550189516704, −7.68630064108811194885570007849, −7.52091772017344907568165291298, −7.22106035986045796352471878956, −7.06845467152089405858334678591, −6.20206738588399614554337900135, −5.62221771801975913554735867536, −5.57444764831798250192042890835, −5.38416862297676243729786241098, −4.75915458462822757358046538981, −4.44869582788402907342451705038, −3.85792070298300776592806113612, −3.17060782278750909088483234794, −3.13880997315856967261120757532, −2.67109934305354037353681252106, −2.05902944977426339903672140167, −1.11845333704597679631350297651, −0.983172168132892547495627375627, 0.983172168132892547495627375627, 1.11845333704597679631350297651, 2.05902944977426339903672140167, 2.67109934305354037353681252106, 3.13880997315856967261120757532, 3.17060782278750909088483234794, 3.85792070298300776592806113612, 4.44869582788402907342451705038, 4.75915458462822757358046538981, 5.38416862297676243729786241098, 5.57444764831798250192042890835, 5.62221771801975913554735867536, 6.20206738588399614554337900135, 7.06845467152089405858334678591, 7.22106035986045796352471878956, 7.52091772017344907568165291298, 7.68630064108811194885570007849, 7.84328873052770445550189516704, 8.675637823845772098176674196827, 9.063309784625067404324276022961

Graph of the $Z$-function along the critical line