L(s) = 1 | + (0.765 + 1.32i)5-s + (−0.507 − 0.292i)11-s − 2.16i·13-s + (2.93 − 5.07i)17-s + (−4.52 + 2.61i)19-s + (−1.94 + 1.12i)23-s + (1.32 − 2.30i)25-s − 5.41i·29-s + (3.74 + 2.16i)31-s + (−2 − 3.46i)37-s − 8.92·41-s + 10.4·43-s + (−3.69 − 6.40i)47-s + (−4.68 − 2.70i)53-s − 0.896i·55-s + ⋯ |
L(s) = 1 | + (0.342 + 0.592i)5-s + (−0.152 − 0.0883i)11-s − 0.600i·13-s + (0.710 − 1.23i)17-s + (−1.03 + 0.599i)19-s + (−0.404 + 0.233i)23-s + (0.265 − 0.460i)25-s − 1.00i·29-s + (0.673 + 0.388i)31-s + (−0.328 − 0.569i)37-s − 1.39·41-s + 1.59·43-s + (−0.539 − 0.933i)47-s + (−0.644 − 0.371i)53-s − 0.120i·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3528 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.360 + 0.932i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3528 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.360 + 0.932i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.529585740\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.529585740\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (-0.765 - 1.32i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (0.507 + 0.292i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 2.16iT - 13T^{2} \) |
| 17 | \( 1 + (-2.93 + 5.07i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (4.52 - 2.61i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (1.94 - 1.12i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 5.41iT - 29T^{2} \) |
| 31 | \( 1 + (-3.74 - 2.16i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (2 + 3.46i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 8.92T + 41T^{2} \) |
| 43 | \( 1 - 10.4T + 43T^{2} \) |
| 47 | \( 1 + (3.69 + 6.40i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (4.68 + 2.70i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.82 + 8.36i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 4.58iT - 71T^{2} \) |
| 73 | \( 1 + (10.9 + 6.30i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-1.17 - 2.02i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 13.5T + 83T^{2} \) |
| 89 | \( 1 + (-2.93 - 5.07i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 8.28iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.269096198517847690268593580444, −7.78114973931192250471661186088, −6.87506190123263658821044601924, −6.22365078455191220375096112635, −5.48319464814353814493930691094, −4.65994497791692755074761139556, −3.61524472072173494220248586063, −2.81562805665366804240096632946, −1.95925041109026581284252364588, −0.47275736570197475029888462058,
1.19857256738834129251455006206, 2.06964722710812389773777591590, 3.20309932025864351652940427843, 4.21547926830156018948155604122, 4.85116410391301763881135313839, 5.75396516495039220232009161490, 6.41247190362545068071465829598, 7.19873742813976110963847791749, 8.157579858537140100771629094411, 8.677406233223603065696231159958