L(s) = 1 | + (−0.765 − 1.32i)5-s + (0.507 + 0.292i)11-s − 2.16i·13-s + (−2.93 + 5.07i)17-s + (−4.52 + 2.61i)19-s + (1.94 − 1.12i)23-s + (1.32 − 2.30i)25-s + 5.41i·29-s + (3.74 + 2.16i)31-s + (−2 − 3.46i)37-s + 8.92·41-s + 10.4·43-s + (3.69 + 6.40i)47-s + (4.68 + 2.70i)53-s − 0.896i·55-s + ⋯ |
L(s) = 1 | + (−0.342 − 0.592i)5-s + (0.152 + 0.0883i)11-s − 0.600i·13-s + (−0.710 + 1.23i)17-s + (−1.03 + 0.599i)19-s + (0.404 − 0.233i)23-s + (0.265 − 0.460i)25-s + 1.00i·29-s + (0.673 + 0.388i)31-s + (−0.328 − 0.569i)37-s + 1.39·41-s + 1.59·43-s + (0.539 + 0.933i)47-s + (0.644 + 0.371i)53-s − 0.120i·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3528 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 - 0.0285i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3528 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 - 0.0285i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.564887717\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.564887717\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (0.765 + 1.32i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-0.507 - 0.292i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 2.16iT - 13T^{2} \) |
| 17 | \( 1 + (2.93 - 5.07i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (4.52 - 2.61i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.94 + 1.12i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 5.41iT - 29T^{2} \) |
| 31 | \( 1 + (-3.74 - 2.16i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (2 + 3.46i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 8.92T + 41T^{2} \) |
| 43 | \( 1 - 10.4T + 43T^{2} \) |
| 47 | \( 1 + (-3.69 - 6.40i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-4.68 - 2.70i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.82 + 8.36i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 4.58iT - 71T^{2} \) |
| 73 | \( 1 + (10.9 + 6.30i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-1.17 - 2.02i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 13.5T + 83T^{2} \) |
| 89 | \( 1 + (2.93 + 5.07i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 8.28iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.690768431138227589834789570806, −7.938955194212058050919433936178, −7.15852340798663026244254763812, −6.22627469146994915689950973404, −5.68030427170139644371251266994, −4.49848136246525386075425316109, −4.17936984858789552716750625930, −3.02968508501070288807188016052, −1.96486103231486648865563476375, −0.797096939138110808563231183858,
0.67136743117451584055438452296, 2.24090315776931309681842489388, 2.86643434829944427319199618963, 4.04271050845528872003780075058, 4.56287485664164636110599776756, 5.61325077130236601268201033824, 6.50819077976241811122376892133, 7.06758188956308643652077610736, 7.66322736136476802349892332129, 8.733333968179003357451223579377