L(s) = 1 | + (1.84 − 3.20i)5-s + (2.95 − 1.70i)11-s + 5.22i·13-s + (−3.37 − 5.85i)17-s + (1.87 + 1.08i)19-s + (−5.40 − 3.12i)23-s + (−4.32 − 7.49i)25-s − 2.58i·29-s + (9.05 − 5.22i)31-s + (−2 + 3.46i)37-s − 0.634·41-s − 6.48·43-s + (1.53 − 2.65i)47-s + (2.23 − 1.29i)53-s − 12.6i·55-s + ⋯ |
L(s) = 1 | + (0.826 − 1.43i)5-s + (0.891 − 0.514i)11-s + 1.44i·13-s + (−0.819 − 1.41i)17-s + (0.430 + 0.248i)19-s + (−1.12 − 0.650i)23-s + (−0.865 − 1.49i)25-s − 0.480i·29-s + (1.62 − 0.938i)31-s + (−0.328 + 0.569i)37-s − 0.0990·41-s − 0.988·43-s + (0.223 − 0.386i)47-s + (0.307 − 0.177i)53-s − 1.70i·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3528 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.360 + 0.932i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3528 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.360 + 0.932i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.996102760\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.996102760\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (-1.84 + 3.20i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-2.95 + 1.70i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 5.22iT - 13T^{2} \) |
| 17 | \( 1 + (3.37 + 5.85i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.87 - 1.08i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (5.40 + 3.12i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 2.58iT - 29T^{2} \) |
| 31 | \( 1 + (-9.05 + 5.22i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (2 - 3.46i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 0.634T + 41T^{2} \) |
| 43 | \( 1 + 6.48T + 43T^{2} \) |
| 47 | \( 1 + (-1.53 + 2.65i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-2.23 + 1.29i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (0.828 + 1.43i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 7.41iT - 71T^{2} \) |
| 73 | \( 1 + (0.776 - 0.448i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-6.82 + 11.8i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 11.7T + 83T^{2} \) |
| 89 | \( 1 + (3.37 - 5.85i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 9.55iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.593285015698908786723089846626, −7.74479348053962971464394139953, −6.46921470194746926546180467710, −6.33693722705362157626320606855, −5.15720760688873391658889823867, −4.59731310086165546449313731819, −3.90446126674341843938226033275, −2.45371077077588127536921124063, −1.63880369621579258814866490425, −0.58739994873138264729924488634,
1.44400549269234970413283943592, 2.37432368157069936667557432797, 3.23696560130103122709582892769, 3.97647564253039752148014641449, 5.16870228353418284403886843368, 6.03069927435768580404688778497, 6.49098106234238245125470842819, 7.17264887751825028607026975302, 8.015364157895183036853824730483, 8.783915962745652749883204262614