L(s) = 1 | + (1.84 − 3.20i)5-s + (−2.95 + 1.70i)11-s − 5.22i·13-s + (−3.37 − 5.85i)17-s + (−1.87 − 1.08i)19-s + (5.40 + 3.12i)23-s + (−4.32 − 7.49i)25-s + 2.58i·29-s + (−9.05 + 5.22i)31-s + (−2 + 3.46i)37-s − 0.634·41-s − 6.48·43-s + (1.53 − 2.65i)47-s + (−2.23 + 1.29i)53-s + 12.6i·55-s + ⋯ |
L(s) = 1 | + (0.826 − 1.43i)5-s + (−0.891 + 0.514i)11-s − 1.44i·13-s + (−0.819 − 1.41i)17-s + (−0.430 − 0.248i)19-s + (1.12 + 0.650i)23-s + (−0.865 − 1.49i)25-s + 0.480i·29-s + (−1.62 + 0.938i)31-s + (−0.328 + 0.569i)37-s − 0.0990·41-s − 0.988·43-s + (0.223 − 0.386i)47-s + (−0.307 + 0.177i)53-s + 1.70i·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3528 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 - 0.0285i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3528 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.999 - 0.0285i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9554012272\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9554012272\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (-1.84 + 3.20i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (2.95 - 1.70i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 5.22iT - 13T^{2} \) |
| 17 | \( 1 + (3.37 + 5.85i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (1.87 + 1.08i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-5.40 - 3.12i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 2.58iT - 29T^{2} \) |
| 31 | \( 1 + (9.05 - 5.22i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (2 - 3.46i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 0.634T + 41T^{2} \) |
| 43 | \( 1 + 6.48T + 43T^{2} \) |
| 47 | \( 1 + (-1.53 + 2.65i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (2.23 - 1.29i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (0.828 + 1.43i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 7.41iT - 71T^{2} \) |
| 73 | \( 1 + (-0.776 + 0.448i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-6.82 + 11.8i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 11.7T + 83T^{2} \) |
| 89 | \( 1 + (3.37 - 5.85i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 9.55iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.331840577809707923755501793235, −7.49597153707701452568676550705, −6.78176645455028573055602239943, −5.60770941213041607713366827074, −5.05577193575518862836725295398, −4.83847562412215794368012644845, −3.35942208025120528319334341047, −2.43663268431455960060523490946, −1.40646014430156779087060370291, −0.26064451854586496212635660462,
1.87807222035528587397981926723, 2.35606046370772230478807572695, 3.41075906948693274067970058821, 4.21587385881129520523589455823, 5.33848393980344857147551567827, 6.18268836418863776226600611053, 6.58994008586648163749084249936, 7.28923138082922975839526809103, 8.213760511086563273791164093965, 9.018484981518682002739389066815