Properties

Label 16-3520e8-1.1-c1e8-0-3
Degree $16$
Conductor $2.357\times 10^{28}$
Sign $1$
Analytic cond. $3.89545\times 10^{11}$
Root an. cond. $5.30163$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·5-s + 10·9-s + 36·25-s − 20·37-s + 80·45-s − 2·49-s + 36·53-s + 43·81-s + 36·89-s − 112·97-s + 16·121-s + 120·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 8·169-s + 173-s + 179-s + 181-s − 160·185-s + 191-s + ⋯
L(s)  = 1  + 3.57·5-s + 10/3·9-s + 36/5·25-s − 3.28·37-s + 11.9·45-s − 2/7·49-s + 4.94·53-s + 43/9·81-s + 3.81·89-s − 11.3·97-s + 1.45·121-s + 10.7·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 8/13·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s − 11.7·185-s + 0.0723·191-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{48} \cdot 5^{8} \cdot 11^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{48} \cdot 5^{8} \cdot 11^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{48} \cdot 5^{8} \cdot 11^{8}\)
Sign: $1$
Analytic conductor: \(3.89545\times 10^{11}\)
Root analytic conductor: \(5.30163\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{48} \cdot 5^{8} \cdot 11^{8} ,\ ( \ : [1/2]^{8} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(50.13287206\)
\(L(\frac12)\) \(\approx\) \(50.13287206\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( ( 1 - T )^{8} \)
11 \( 1 - 16 T^{2} + 174 T^{4} - 16 p^{2} T^{6} + p^{4} T^{8} \)
good3 \( ( 1 - T - 2 T^{2} - p T^{3} + p^{2} T^{4} )^{2}( 1 + T - 2 T^{2} + p T^{3} + p^{2} T^{4} )^{2} \)
7 \( ( 1 + T^{2} + 24 T^{4} + p^{2} T^{6} + p^{4} T^{8} )^{2} \)
13 \( ( 1 - 4 T^{2} - 186 T^{4} - 4 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
17 \( ( 1 - 59 T^{2} + 1440 T^{4} - 59 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
19 \( ( 1 + 61 T^{2} + 1644 T^{4} + 61 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
23 \( ( 1 - 64 T^{2} + 1950 T^{4} - 64 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
29 \( ( 1 - 23 T^{2} + 420 T^{4} - 23 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
31 \( ( 1 - 5 T - 6 T^{2} - 5 p T^{3} + p^{2} T^{4} )^{2}( 1 + 5 T - 6 T^{2} + 5 p T^{3} + p^{2} T^{4} )^{2} \)
37 \( ( 1 + 5 T + 72 T^{2} + 5 p T^{3} + p^{2} T^{4} )^{4} \)
41 \( ( 1 - 20 T^{2} + 1350 T^{4} - 20 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
43 \( ( 1 + 136 T^{2} + 8190 T^{4} + 136 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
47 \( ( 1 - 112 T^{2} + 6366 T^{4} - 112 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
53 \( ( 1 - 9 T + 52 T^{2} - 9 p T^{3} + p^{2} T^{4} )^{4} \)
59 \( ( 1 - 160 T^{2} + 12174 T^{4} - 160 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
61 \( ( 1 - 79 T^{2} + 8004 T^{4} - 79 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
67 \( ( 1 - 16 T + p T^{2} )^{4}( 1 + 16 T + p T^{2} )^{4} \)
71 \( ( 1 - 157 T^{2} + 15576 T^{4} - 157 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
73 \( ( 1 - 148 T^{2} + 11382 T^{4} - 148 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
79 \( ( 1 + 76 T^{2} + 11814 T^{4} + 76 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
83 \( ( 1 + 188 T^{2} + 17862 T^{4} + 188 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
89 \( ( 1 - 9 T + 124 T^{2} - 9 p T^{3} + p^{2} T^{4} )^{4} \)
97 \( ( 1 + 14 T + p T^{2} )^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−3.53681144375040520369354672281, −3.47476576770139093025533511832, −3.35712183382092659142139007506, −3.22227422723914938157136636310, −3.11281328180179687930943150964, −2.75236162477076652597812349716, −2.61749420530594857926966740206, −2.59515523528924104277757137237, −2.57815887670650098889363525246, −2.45194704748854224441357671051, −2.41235088578703562779177833664, −2.30408363649918705630629022900, −1.90460937519437429548723363827, −1.87611395885461623591898405428, −1.71511233437883871699605145644, −1.71181262053409375773188049614, −1.53453198551238137825158300293, −1.49827724444586148916649251610, −1.47211476505596434376245208342, −1.15576168662604330240142940026, −1.02409216387650821607527866552, −0.955071541098561729915568421218, −0.59514578955397419416280270835, −0.51974041728429775552642275325, −0.25120615327085028879572847832, 0.25120615327085028879572847832, 0.51974041728429775552642275325, 0.59514578955397419416280270835, 0.955071541098561729915568421218, 1.02409216387650821607527866552, 1.15576168662604330240142940026, 1.47211476505596434376245208342, 1.49827724444586148916649251610, 1.53453198551238137825158300293, 1.71181262053409375773188049614, 1.71511233437883871699605145644, 1.87611395885461623591898405428, 1.90460937519437429548723363827, 2.30408363649918705630629022900, 2.41235088578703562779177833664, 2.45194704748854224441357671051, 2.57815887670650098889363525246, 2.59515523528924104277757137237, 2.61749420530594857926966740206, 2.75236162477076652597812349716, 3.11281328180179687930943150964, 3.22227422723914938157136636310, 3.35712183382092659142139007506, 3.47476576770139093025533511832, 3.53681144375040520369354672281

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.