L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.499 − 0.866i)4-s + (−0.5 − 0.866i)5-s + (−1 + 1.73i)7-s − 0.999·8-s − 0.999·10-s + (0.5 − 0.866i)11-s + (0.5 + 0.866i)13-s + (0.999 + 1.73i)14-s + (−0.5 + 0.866i)16-s − 5·17-s + 3·19-s + (−0.499 + 0.866i)20-s + (−0.499 − 0.866i)22-s + (−0.499 + 0.866i)25-s + 0.999·26-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (−0.249 − 0.433i)4-s + (−0.223 − 0.387i)5-s + (−0.377 + 0.654i)7-s − 0.353·8-s − 0.316·10-s + (0.150 − 0.261i)11-s + (0.138 + 0.240i)13-s + (0.267 + 0.462i)14-s + (−0.125 + 0.216i)16-s − 1.21·17-s + 0.688·19-s + (−0.111 + 0.193i)20-s + (−0.106 − 0.184i)22-s + (−0.0999 + 0.173i)25-s + 0.196·26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3510 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.173 - 0.984i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3510 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.173 - 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.6605326155\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6605326155\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.5 + 0.866i)T \) |
| 13 | \( 1 + (-0.5 - 0.866i)T \) |
good | 7 | \( 1 + (1 - 1.73i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-0.5 + 0.866i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + 5T + 17T^{2} \) |
| 19 | \( 1 - 3T + 19T^{2} \) |
| 23 | \( 1 + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-4 + 6.92i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (3 + 5.19i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 8T + 37T^{2} \) |
| 41 | \( 1 + (-3.5 - 6.06i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (2.5 - 4.33i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (6 - 10.3i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 2T + 53T^{2} \) |
| 59 | \( 1 + (2.5 + 4.33i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (7 - 12.1i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-7.5 - 12.9i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 2T + 71T^{2} \) |
| 73 | \( 1 + 11T + 73T^{2} \) |
| 79 | \( 1 + (1 - 1.73i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (6 - 10.3i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 10T + 89T^{2} \) |
| 97 | \( 1 + (-6.5 + 11.2i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.836378011511291963881294864645, −8.212886836932968270747120215996, −7.22345899988281511316687118548, −6.24563690617456204549495509686, −5.77545485277356540238842344107, −4.71347161161108946780578017702, −4.17996937250630235286214880096, −3.12908415246417627941448169128, −2.38271564793668515133924981672, −1.23953861718959448476971005089,
0.17790834389363177406800796806, 1.81689252393259546455818039967, 3.18883287848661479335573067989, 3.66493443569365931540491263894, 4.68573705182230860107779556324, 5.31925618873662863103241807560, 6.38208229646195204086821196752, 7.01677364232228273208716711719, 7.29595125668086425625171373231, 8.431420282665371087248460688158