L(s) = 1 | + (1.14 + 1.14i)2-s + 0.599i·4-s + (−2.84 − 2.84i)5-s + (−2.82 − 2.82i)7-s + (1.59 − 1.59i)8-s − 6.48i·10-s + (−2.08 + 2.08i)11-s + (3.59 − 0.331i)13-s − 6.44i·14-s + 4.83·16-s − 3.94·17-s + (2.32 − 2.32i)19-s + (1.70 − 1.70i)20-s − 4.74·22-s + 0.755·23-s + ⋯ |
L(s) = 1 | + (0.806 + 0.806i)2-s + 0.299i·4-s + (−1.27 − 1.27i)5-s + (−1.06 − 1.06i)7-s + (0.564 − 0.564i)8-s − 2.05i·10-s + (−0.627 + 0.627i)11-s + (0.995 − 0.0918i)13-s − 1.72i·14-s + 1.20·16-s − 0.957·17-s + (0.532 − 0.532i)19-s + (0.381 − 0.381i)20-s − 1.01·22-s + 0.157·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 351 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.376 + 0.926i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 351 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.376 + 0.926i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.06590 - 0.717369i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.06590 - 0.717369i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 13 | \( 1 + (-3.59 + 0.331i)T \) |
good | 2 | \( 1 + (-1.14 - 1.14i)T + 2iT^{2} \) |
| 5 | \( 1 + (2.84 + 2.84i)T + 5iT^{2} \) |
| 7 | \( 1 + (2.82 + 2.82i)T + 7iT^{2} \) |
| 11 | \( 1 + (2.08 - 2.08i)T - 11iT^{2} \) |
| 17 | \( 1 + 3.94T + 17T^{2} \) |
| 19 | \( 1 + (-2.32 + 2.32i)T - 19iT^{2} \) |
| 23 | \( 1 - 0.755T + 23T^{2} \) |
| 29 | \( 1 - 3.40iT - 29T^{2} \) |
| 31 | \( 1 + (-6.39 + 6.39i)T - 31iT^{2} \) |
| 37 | \( 1 + (2.85 + 2.85i)T + 37iT^{2} \) |
| 41 | \( 1 + (-2.08 - 2.08i)T + 41iT^{2} \) |
| 43 | \( 1 - 0.526iT - 43T^{2} \) |
| 47 | \( 1 + (-3.18 + 3.18i)T - 47iT^{2} \) |
| 53 | \( 1 + 10.3iT - 53T^{2} \) |
| 59 | \( 1 + (-7.20 + 7.20i)T - 59iT^{2} \) |
| 61 | \( 1 - 2.91T + 61T^{2} \) |
| 67 | \( 1 + (5.13 - 5.13i)T - 67iT^{2} \) |
| 71 | \( 1 + (2.08 + 2.08i)T + 71iT^{2} \) |
| 73 | \( 1 + (3.56 + 3.56i)T + 73iT^{2} \) |
| 79 | \( 1 - 5.79T + 79T^{2} \) |
| 83 | \( 1 + (-7.18 - 7.18i)T + 83iT^{2} \) |
| 89 | \( 1 + (1.51 - 1.51i)T - 89iT^{2} \) |
| 97 | \( 1 + (-2.07 + 2.07i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.46187179576160653483430392605, −10.41917807024574307860421253505, −9.357634347593882319532233535963, −8.205995144072111714305581044832, −7.32756037535872843254113259916, −6.56507809989838323481170729374, −5.20643869568023611739936762536, −4.33759890563842219468653148386, −3.64015667909104544400858501524, −0.70109349887895909424328704339,
2.71295311584109760342583148728, 3.21146414264671442637358558256, 4.19619117376579742555071273601, 5.76671652294862497211786171100, 6.73076526489694647877063757753, 7.928268832357820668732243966106, 8.779911518939129874491731965749, 10.34250346959944240579849999879, 10.96090952545874967922080009365, 11.78013500404801624173885878423