L(s) = 1 | + (−1.94 − 1.94i)2-s + 5.55i·4-s + (−0.426 − 0.426i)5-s + (−1.60 − 1.60i)7-s + (6.90 − 6.90i)8-s + 1.65i·10-s + (1.16 − 1.16i)11-s + (3.11 − 1.81i)13-s + 6.21i·14-s − 15.7·16-s − 6.73·17-s + (−1.61 + 1.61i)19-s + (2.37 − 2.37i)20-s − 4.53·22-s − 7.07·23-s + ⋯ |
L(s) = 1 | + (−1.37 − 1.37i)2-s + 2.77i·4-s + (−0.190 − 0.190i)5-s + (−0.604 − 0.604i)7-s + (2.44 − 2.44i)8-s + 0.524i·10-s + (0.351 − 0.351i)11-s + (0.863 − 0.504i)13-s + 1.66i·14-s − 3.93·16-s − 1.63·17-s + (−0.371 + 0.371i)19-s + (0.529 − 0.529i)20-s − 0.966·22-s − 1.47·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 351 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.733 - 0.679i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 351 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.733 - 0.679i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0894813 + 0.228091i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0894813 + 0.228091i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 13 | \( 1 + (-3.11 + 1.81i)T \) |
good | 2 | \( 1 + (1.94 + 1.94i)T + 2iT^{2} \) |
| 5 | \( 1 + (0.426 + 0.426i)T + 5iT^{2} \) |
| 7 | \( 1 + (1.60 + 1.60i)T + 7iT^{2} \) |
| 11 | \( 1 + (-1.16 + 1.16i)T - 11iT^{2} \) |
| 17 | \( 1 + 6.73T + 17T^{2} \) |
| 19 | \( 1 + (1.61 - 1.61i)T - 19iT^{2} \) |
| 23 | \( 1 + 7.07T + 23T^{2} \) |
| 29 | \( 1 - 4.74iT - 29T^{2} \) |
| 31 | \( 1 + (3.99 - 3.99i)T - 31iT^{2} \) |
| 37 | \( 1 + (5.84 + 5.84i)T + 37iT^{2} \) |
| 41 | \( 1 + (1.16 + 1.16i)T + 41iT^{2} \) |
| 43 | \( 1 - 2.02iT - 43T^{2} \) |
| 47 | \( 1 + (-5.13 + 5.13i)T - 47iT^{2} \) |
| 53 | \( 1 + 0.512iT - 53T^{2} \) |
| 59 | \( 1 + (4.62 - 4.62i)T - 59iT^{2} \) |
| 61 | \( 1 + 1.50T + 61T^{2} \) |
| 67 | \( 1 + (-3.28 + 3.28i)T - 67iT^{2} \) |
| 71 | \( 1 + (7.49 + 7.49i)T + 71iT^{2} \) |
| 73 | \( 1 + (4.30 + 4.30i)T + 73iT^{2} \) |
| 79 | \( 1 + 9.54T + 79T^{2} \) |
| 83 | \( 1 + (-1.71 - 1.71i)T + 83iT^{2} \) |
| 89 | \( 1 + (-5.47 + 5.47i)T - 89iT^{2} \) |
| 97 | \( 1 + (-5.52 + 5.52i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.58880342052477618436222648903, −10.33316588789297672377204859825, −8.970052987284590326759068806470, −8.619360280880115876887795566948, −7.49188797690061387525299393944, −6.42954376812945883725389763597, −4.16820039747433022104225189377, −3.41122478440646903149660484418, −1.89713152800231567693760973112, −0.25570602557134219938769680629,
1.96263403402319469788486207116, 4.35372398595986271795866069056, 5.86462344614598959101311017343, 6.46733872050131734895027477293, 7.30512658950649443864205201825, 8.446165397455446497721497967646, 9.068717183158546750351790814192, 9.781389266692906200555130699370, 10.84650118275559819173452357274, 11.63906954422249871150105107570