| L(s) = 1 | + (1.73 + i)2-s + (−7.22 + 4.16i)3-s + (1.99 + 3.46i)4-s − 16.6·6-s + (−8.19 − 16.6i)7-s + 7.99i·8-s + (21.2 − 36.8i)9-s + (13.1 + 22.7i)11-s + (−28.8 − 16.6i)12-s − 38.1i·13-s + (2.41 − 36.9i)14-s + (−8 + 13.8i)16-s + (−2.07 + 1.19i)17-s + (73.7 − 42.5i)18-s + (49.8 − 86.4i)19-s + ⋯ |
| L(s) = 1 | + (0.612 + 0.353i)2-s + (−1.38 + 0.802i)3-s + (0.249 + 0.433i)4-s − 1.13·6-s + (−0.442 − 0.896i)7-s + 0.353i·8-s + (0.788 − 1.36i)9-s + (0.360 + 0.623i)11-s + (−0.694 − 0.401i)12-s − 0.814i·13-s + (0.0460 − 0.705i)14-s + (−0.125 + 0.216i)16-s + (−0.0295 + 0.0170i)17-s + (0.965 − 0.557i)18-s + (0.602 − 1.04i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.895 - 0.445i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.895 - 0.445i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(2)\) |
\(\approx\) |
\(1.449295238\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.449295238\) |
| \(L(\frac{5}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-1.73 - i)T \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (8.19 + 16.6i)T \) |
| good | 3 | \( 1 + (7.22 - 4.16i)T + (13.5 - 23.3i)T^{2} \) |
| 11 | \( 1 + (-13.1 - 22.7i)T + (-665.5 + 1.15e3i)T^{2} \) |
| 13 | \( 1 + 38.1iT - 2.19e3T^{2} \) |
| 17 | \( 1 + (2.07 - 1.19i)T + (2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (-49.8 + 86.4i)T + (-3.42e3 - 5.94e3i)T^{2} \) |
| 23 | \( 1 + (88.1 + 50.8i)T + (6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 - 223.T + 2.43e4T^{2} \) |
| 31 | \( 1 + (-133. - 231. i)T + (-1.48e4 + 2.57e4i)T^{2} \) |
| 37 | \( 1 + (-314. - 181. i)T + (2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 + 94.9T + 6.89e4T^{2} \) |
| 43 | \( 1 - 406. iT - 7.95e4T^{2} \) |
| 47 | \( 1 + (296. + 171. i)T + (5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + (-470. + 271. i)T + (7.44e4 - 1.28e5i)T^{2} \) |
| 59 | \( 1 + (196. + 340. i)T + (-1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-252. + 436. i)T + (-1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (47.5 - 27.4i)T + (1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 - 889.T + 3.57e5T^{2} \) |
| 73 | \( 1 + (-442. + 255. i)T + (1.94e5 - 3.36e5i)T^{2} \) |
| 79 | \( 1 + (-136. + 237. i)T + (-2.46e5 - 4.26e5i)T^{2} \) |
| 83 | \( 1 + 525. iT - 5.71e5T^{2} \) |
| 89 | \( 1 + (-827. + 1.43e3i)T + (-3.52e5 - 6.10e5i)T^{2} \) |
| 97 | \( 1 - 5.76iT - 9.12e5T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.19440015579772260135841623414, −10.26104082434845365939222193427, −9.741967577675620396728539448984, −8.115528805464494663286723168655, −6.80222498646212352893543002508, −6.30206850630133072112846070885, −4.97718163711057130548837737050, −4.49427638231673156013827695084, −3.20988517213239214754403609966, −0.68106415984842921853941146169,
0.943043875559843830092030799257, 2.32389694145188210635239070588, 3.97447866269778886346209480839, 5.36737162450854691911827635646, 6.04847121292086856432766280035, 6.65105670804791343327458021546, 7.963314067232480887655545044799, 9.358776556749998640566611563873, 10.36441129227080838208593454730, 11.53371939497772903202031098779