L(s) = 1 | + (1.73 − i)2-s + (0.866 + 0.5i)3-s + (1.99 − 3.46i)4-s + 1.99·6-s + (6.06 + 17.5i)7-s − 7.99i·8-s + (−13 − 22.5i)9-s + (15 − 25.9i)11-s + (3.46 − 1.99i)12-s − 44i·13-s + (28 + 24.2i)14-s + (−8 − 13.8i)16-s + (20.7 + 12i)17-s + (−45.0 − 26i)18-s + (1 + 1.73i)19-s + ⋯ |
L(s) = 1 | + (0.612 − 0.353i)2-s + (0.166 + 0.0962i)3-s + (0.249 − 0.433i)4-s + 0.136·6-s + (0.327 + 0.944i)7-s − 0.353i·8-s + (−0.481 − 0.833i)9-s + (0.411 − 0.712i)11-s + (0.0833 − 0.0481i)12-s − 0.938i·13-s + (0.534 + 0.462i)14-s + (−0.125 − 0.216i)16-s + (0.296 + 0.171i)17-s + (−0.589 − 0.340i)18-s + (0.0120 + 0.0209i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.324 + 0.946i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.324 + 0.946i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.852297922\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.852297922\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.73 + i)T \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (-6.06 - 17.5i)T \) |
good | 3 | \( 1 + (-0.866 - 0.5i)T + (13.5 + 23.3i)T^{2} \) |
| 11 | \( 1 + (-15 + 25.9i)T + (-665.5 - 1.15e3i)T^{2} \) |
| 13 | \( 1 + 44iT - 2.19e3T^{2} \) |
| 17 | \( 1 + (-20.7 - 12i)T + (2.45e3 + 4.25e3i)T^{2} \) |
| 19 | \( 1 + (-1 - 1.73i)T + (-3.42e3 + 5.94e3i)T^{2} \) |
| 23 | \( 1 + (-158. + 91.5i)T + (6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 - 279T + 2.43e4T^{2} \) |
| 31 | \( 1 + (-20 + 34.6i)T + (-1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 + (65.8 - 38i)T + (2.53e4 - 4.38e4i)T^{2} \) |
| 41 | \( 1 + 423T + 6.89e4T^{2} \) |
| 43 | \( 1 + 305iT - 7.95e4T^{2} \) |
| 47 | \( 1 + (-394. + 228i)T + (5.19e4 - 8.99e4i)T^{2} \) |
| 53 | \( 1 + (171. + 99i)T + (7.44e4 + 1.28e5i)T^{2} \) |
| 59 | \( 1 + (231 - 400. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (140.5 + 243. i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-432. - 249.5i)T + (1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 + 534T + 3.57e5T^{2} \) |
| 73 | \( 1 + (-692. - 400i)T + (1.94e5 + 3.36e5i)T^{2} \) |
| 79 | \( 1 + (395 + 684. i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 - 597iT - 5.71e5T^{2} \) |
| 89 | \( 1 + (-508.5 - 880. i)T + (-3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 + 1.33e3iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.02591019814594392867144718637, −10.11108534990135782961088145669, −8.876611691107975432272936848667, −8.386751876638567735289375028802, −6.74134613568049454577641844261, −5.83780818221719658949007173664, −4.94936668422614855825731103121, −3.46887674337377801432494365093, −2.66344435271861373075420432371, −0.872165827103922320657138288901,
1.53036521612756674777585276989, 3.05545262959840560915943525814, 4.41045044896899023031541625802, 5.09227194055111168856785456192, 6.59514068510083679157138394735, 7.29553031806720890947831812021, 8.203316467166665546439206617089, 9.312923338169031721585676800034, 10.49376039632195264823763740754, 11.33700563179333859090448228799