L(s) = 1 | + (−1 − 1.73i)2-s + (−4.59 + 7.95i)3-s + (−1.99 + 3.46i)4-s + 18.3·6-s + (−8.37 + 16.5i)7-s + 7.99·8-s + (−28.7 − 49.7i)9-s + (−17.7 + 30.7i)11-s + (−18.3 − 31.8i)12-s − 45.5·13-s + (36.9 − 2.01i)14-s + (−8 − 13.8i)16-s + (−46.8 + 81.1i)17-s + (−57.4 + 99.4i)18-s + (−22.4 − 38.8i)19-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (−0.884 + 1.53i)3-s + (−0.249 + 0.433i)4-s + 1.25·6-s + (−0.452 + 0.891i)7-s + 0.353·8-s + (−1.06 − 1.84i)9-s + (−0.486 + 0.842i)11-s + (−0.442 − 0.765i)12-s − 0.971·13-s + (0.706 − 0.0385i)14-s + (−0.125 − 0.216i)16-s + (−0.668 + 1.15i)17-s + (−0.751 + 1.30i)18-s + (−0.270 − 0.469i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.00887 + 0.999i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.00887 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.08518606125\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.08518606125\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1 + 1.73i)T \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (8.37 - 16.5i)T \) |
good | 3 | \( 1 + (4.59 - 7.95i)T + (-13.5 - 23.3i)T^{2} \) |
| 11 | \( 1 + (17.7 - 30.7i)T + (-665.5 - 1.15e3i)T^{2} \) |
| 13 | \( 1 + 45.5T + 2.19e3T^{2} \) |
| 17 | \( 1 + (46.8 - 81.1i)T + (-2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (22.4 + 38.8i)T + (-3.42e3 + 5.94e3i)T^{2} \) |
| 23 | \( 1 + (-61.2 - 106. i)T + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 + 17.8T + 2.43e4T^{2} \) |
| 31 | \( 1 + (13.5 - 23.5i)T + (-1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 + (-39.0 - 67.5i)T + (-2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 + 21.0T + 6.89e4T^{2} \) |
| 43 | \( 1 - 467.T + 7.95e4T^{2} \) |
| 47 | \( 1 + (289. + 501. i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + (-80.6 + 139. i)T + (-7.44e4 - 1.28e5i)T^{2} \) |
| 59 | \( 1 + (-279. + 484. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-54.3 - 94.2i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (203. - 353. i)T + (-1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 - 1.15e3T + 3.57e5T^{2} \) |
| 73 | \( 1 + (128. - 222. i)T + (-1.94e5 - 3.36e5i)T^{2} \) |
| 79 | \( 1 + (-426. - 739. i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 + 828.T + 5.71e5T^{2} \) |
| 89 | \( 1 + (82.4 + 142. i)T + (-3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 - 38.6T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.49369594297330726515791138658, −10.76478266948096831248445103249, −9.873484690971867315360397414723, −9.455975044821418707419923857105, −8.456824512925687606710426482798, −6.86191004542168951339125415637, −5.55990897775982291947740756060, −4.79202611064632316831076633811, −3.71952168431944701761057809738, −2.36957089075263574098848151012,
0.05117631649168957303892251938, 0.854153894498952694955603928820, 2.56356972314046997204514208783, 4.70112590706780797405643056930, 5.81827572642937841972256757592, 6.66888862397614929558735372987, 7.34056329142440626512530901507, 8.030540435294665896461852147267, 9.320939671717160073872494601324, 10.59475774034243690680674253314