Properties

Label 2-350-175.3-c1-0-0
Degree $2$
Conductor $350$
Sign $0.174 + 0.984i$
Analytic cond. $2.79476$
Root an. cond. $1.67175$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.544 + 0.838i)2-s + (−1.15 + 3.01i)3-s + (−0.406 − 0.913i)4-s + (−1.77 − 1.35i)5-s + (−1.89 − 2.61i)6-s + (−0.00275 + 2.64i)7-s + (0.987 + 0.156i)8-s + (−5.51 − 4.96i)9-s + (2.10 − 0.755i)10-s + (0.696 + 0.773i)11-s + (3.22 − 0.168i)12-s + (−3.97 − 2.02i)13-s + (−2.21 − 1.44i)14-s + (6.13 − 3.79i)15-s + (−0.669 + 0.743i)16-s + (1.70 − 2.10i)17-s + ⋯
L(s)  = 1  + (−0.385 + 0.593i)2-s + (−0.667 + 1.73i)3-s + (−0.203 − 0.456i)4-s + (−0.795 − 0.605i)5-s + (−0.774 − 1.06i)6-s + (−0.00104 + 0.999i)7-s + (0.349 + 0.0553i)8-s + (−1.83 − 1.65i)9-s + (0.665 − 0.238i)10-s + (0.209 + 0.233i)11-s + (0.930 − 0.0487i)12-s + (−1.10 − 0.561i)13-s + (−0.592 − 0.385i)14-s + (1.58 − 0.980i)15-s + (−0.167 + 0.185i)16-s + (0.413 − 0.511i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.174 + 0.984i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.174 + 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(350\)    =    \(2 \cdot 5^{2} \cdot 7\)
Sign: $0.174 + 0.984i$
Analytic conductor: \(2.79476\)
Root analytic conductor: \(1.67175\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{350} (3, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 350,\ (\ :1/2),\ 0.174 + 0.984i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0700047 - 0.0586595i\)
\(L(\frac12)\) \(\approx\) \(0.0700047 - 0.0586595i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.544 - 0.838i)T \)
5 \( 1 + (1.77 + 1.35i)T \)
7 \( 1 + (0.00275 - 2.64i)T \)
good3 \( 1 + (1.15 - 3.01i)T + (-2.22 - 2.00i)T^{2} \)
11 \( 1 + (-0.696 - 0.773i)T + (-1.14 + 10.9i)T^{2} \)
13 \( 1 + (3.97 + 2.02i)T + (7.64 + 10.5i)T^{2} \)
17 \( 1 + (-1.70 + 2.10i)T + (-3.53 - 16.6i)T^{2} \)
19 \( 1 + (2.97 + 1.32i)T + (12.7 + 14.1i)T^{2} \)
23 \( 1 + (-4.00 - 2.60i)T + (9.35 + 21.0i)T^{2} \)
29 \( 1 + (-2.96 + 4.08i)T + (-8.96 - 27.5i)T^{2} \)
31 \( 1 + (5.23 - 0.549i)T + (30.3 - 6.44i)T^{2} \)
37 \( 1 + (-0.133 - 2.53i)T + (-36.7 + 3.86i)T^{2} \)
41 \( 1 + (-1.71 + 0.557i)T + (33.1 - 24.0i)T^{2} \)
43 \( 1 + (4.92 + 4.92i)T + 43iT^{2} \)
47 \( 1 + (9.14 - 7.40i)T + (9.77 - 45.9i)T^{2} \)
53 \( 1 + (6.25 + 2.40i)T + (39.3 + 35.4i)T^{2} \)
59 \( 1 + (13.2 + 2.80i)T + (53.8 + 23.9i)T^{2} \)
61 \( 1 + (0.578 + 2.72i)T + (-55.7 + 24.8i)T^{2} \)
67 \( 1 + (4.15 + 3.36i)T + (13.9 + 65.5i)T^{2} \)
71 \( 1 + (-6.39 - 4.64i)T + (21.9 + 67.5i)T^{2} \)
73 \( 1 + (16.7 + 0.879i)T + (72.6 + 7.63i)T^{2} \)
79 \( 1 + (11.8 + 1.24i)T + (77.2 + 16.4i)T^{2} \)
83 \( 1 + (-0.547 + 3.45i)T + (-78.9 - 25.6i)T^{2} \)
89 \( 1 + (-11.4 + 2.42i)T + (81.3 - 36.1i)T^{2} \)
97 \( 1 + (-0.878 - 5.54i)T + (-92.2 + 29.9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.88054742081804796504503623553, −11.23846623402128261196755322419, −10.14725043458943666313027721746, −9.364181468533614644073707779456, −8.805326047871810829431282714418, −7.66524004655836102172887498208, −6.17230211840065364006316799438, −5.04786163904439903820782469269, −4.74494528545006123856476865133, −3.24147743230796426528841640433, 0.07778146214850433535418617473, 1.60878243805888021260494004311, 3.08546216770310709635132047572, 4.63326642166390047060678232250, 6.34278629567640490124703420824, 7.13263605156622853191443932119, 7.65952308503255335308774332254, 8.619464159362834477577308007939, 10.26433937479522319779746873933, 11.01945178170454200580767516878

Graph of the $Z$-function along the critical line