Properties

Label 2-35-35.18-c4-0-2
Degree $2$
Conductor $35$
Sign $-0.183 - 0.983i$
Analytic cond. $3.61794$
Root an. cond. $1.90209$
Motivic weight $4$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−5.20 − 1.39i)2-s + (2.56 − 0.687i)3-s + (11.2 + 6.49i)4-s + (−19.5 − 15.5i)5-s − 14.2·6-s + (20.1 + 44.6i)7-s + (11.4 + 11.4i)8-s + (−64.0 + 36.9i)9-s + (80.2 + 108. i)10-s + (−91.3 + 158. i)11-s + (33.3 + 8.92i)12-s + (141. + 141. i)13-s + (−42.6 − 260. i)14-s + (−60.9 − 26.3i)15-s + (−147. − 255. i)16-s + (−110. − 412. i)17-s + ⋯
L(s)  = 1  + (−1.30 − 0.348i)2-s + (0.285 − 0.0763i)3-s + (0.702 + 0.405i)4-s + (−0.783 − 0.621i)5-s − 0.397·6-s + (0.411 + 0.911i)7-s + (0.179 + 0.179i)8-s + (−0.790 + 0.456i)9-s + (0.802 + 1.08i)10-s + (−0.755 + 1.30i)11-s + (0.231 + 0.0619i)12-s + (0.839 + 0.839i)13-s + (−0.217 − 1.32i)14-s + (−0.270 − 0.117i)15-s + (−0.576 − 0.998i)16-s + (−0.382 − 1.42i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 35 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.183 - 0.983i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 35 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (-0.183 - 0.983i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(35\)    =    \(5 \cdot 7\)
Sign: $-0.183 - 0.983i$
Analytic conductor: \(3.61794\)
Root analytic conductor: \(1.90209\)
Motivic weight: \(4\)
Rational: no
Arithmetic: yes
Character: $\chi_{35} (18, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 35,\ (\ :2),\ -0.183 - 0.983i)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(0.226401 + 0.272470i\)
\(L(\frac12)\) \(\approx\) \(0.226401 + 0.272470i\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (19.5 + 15.5i)T \)
7 \( 1 + (-20.1 - 44.6i)T \)
good2 \( 1 + (5.20 + 1.39i)T + (13.8 + 8i)T^{2} \)
3 \( 1 + (-2.56 + 0.687i)T + (70.1 - 40.5i)T^{2} \)
11 \( 1 + (91.3 - 158. i)T + (-7.32e3 - 1.26e4i)T^{2} \)
13 \( 1 + (-141. - 141. i)T + 2.85e4iT^{2} \)
17 \( 1 + (110. + 412. i)T + (-7.23e4 + 4.17e4i)T^{2} \)
19 \( 1 + (213. - 123. i)T + (6.51e4 - 1.12e5i)T^{2} \)
23 \( 1 + (132. - 492. i)T + (-2.42e5 - 1.39e5i)T^{2} \)
29 \( 1 + 1.08e3iT - 7.07e5T^{2} \)
31 \( 1 + (227. - 393. i)T + (-4.61e5 - 7.99e5i)T^{2} \)
37 \( 1 + (-72.2 - 19.3i)T + (1.62e6 + 9.37e5i)T^{2} \)
41 \( 1 + 1.37e3T + 2.82e6T^{2} \)
43 \( 1 + (493. + 493. i)T + 3.41e6iT^{2} \)
47 \( 1 + (-826. - 221. i)T + (4.22e6 + 2.43e6i)T^{2} \)
53 \( 1 + (2.89e3 - 775. i)T + (6.83e6 - 3.94e6i)T^{2} \)
59 \( 1 + (-1.51e3 - 873. i)T + (6.05e6 + 1.04e7i)T^{2} \)
61 \( 1 + (-1.63e3 - 2.84e3i)T + (-6.92e6 + 1.19e7i)T^{2} \)
67 \( 1 + (700. + 2.61e3i)T + (-1.74e7 + 1.00e7i)T^{2} \)
71 \( 1 - 242.T + 2.54e7T^{2} \)
73 \( 1 + (-4.72e3 + 1.26e3i)T + (2.45e7 - 1.41e7i)T^{2} \)
79 \( 1 + (-3.16e3 + 1.82e3i)T + (1.94e7 - 3.37e7i)T^{2} \)
83 \( 1 + (-7.24e3 - 7.24e3i)T + 4.74e7iT^{2} \)
89 \( 1 + (-2.12e3 + 1.22e3i)T + (3.13e7 - 5.43e7i)T^{2} \)
97 \( 1 + (-1.79e3 + 1.79e3i)T - 8.85e7iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.28687745419114477887954685702, −15.28244582084376274744112163486, −13.68639921973704444395696582066, −11.98432727616483103840005910850, −11.17855798786818095924922727710, −9.468618926703003704112924149363, −8.547319602452921352499937602837, −7.61691808461394555347526521459, −4.95148914765805576771904520466, −2.09721181712378150057769569459, 0.35938655289280206779674362983, 3.60560035586883161628956512788, 6.46132339100086679773400240655, 8.119870349592942288694078582528, 8.476339008813339529809912613102, 10.61360422852097779079415601721, 10.95610349710910306740026277286, 13.17130055638129800516957212127, 14.58059866019350076713167495135, 15.70751857724884116951567815080

Graph of the $Z$-function along the critical line