| L(s) = 1 | + (0.5 + 1.86i)2-s + (−1.86 − 0.5i)3-s + (−1.5 + 0.866i)4-s + (1.86 − 1.23i)5-s − 3.73i·6-s + (−2.5 − 0.866i)7-s + (0.366 + 0.366i)8-s + (0.633 + 0.366i)9-s + (3.23 + 2.86i)10-s + (−0.366 − 0.633i)11-s + (3.23 − 0.866i)12-s + (−2 + 2i)13-s + (0.366 − 5.09i)14-s + (−4.09 + 1.36i)15-s + (−2.23 + 3.86i)16-s + (0.267 − i)17-s + ⋯ |
| L(s) = 1 | + (0.353 + 1.31i)2-s + (−1.07 − 0.288i)3-s + (−0.750 + 0.433i)4-s + (0.834 − 0.550i)5-s − 1.52i·6-s + (−0.944 − 0.327i)7-s + (0.129 + 0.129i)8-s + (0.211 + 0.122i)9-s + (1.02 + 0.906i)10-s + (−0.110 − 0.191i)11-s + (0.933 − 0.249i)12-s + (−0.554 + 0.554i)13-s + (0.0978 − 1.36i)14-s + (−1.05 + 0.352i)15-s + (−0.558 + 0.966i)16-s + (0.0649 − 0.242i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 35 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.417 - 0.908i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 35 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.417 - 0.908i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.586423 + 0.376105i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.586423 + 0.376105i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 + (-1.86 + 1.23i)T \) |
| 7 | \( 1 + (2.5 + 0.866i)T \) |
| good | 2 | \( 1 + (-0.5 - 1.86i)T + (-1.73 + i)T^{2} \) |
| 3 | \( 1 + (1.86 + 0.5i)T + (2.59 + 1.5i)T^{2} \) |
| 11 | \( 1 + (0.366 + 0.633i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (2 - 2i)T - 13iT^{2} \) |
| 17 | \( 1 + (-0.267 + i)T + (-14.7 - 8.5i)T^{2} \) |
| 19 | \( 1 + (1.36 - 2.36i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-6.96 + 1.86i)T + (19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 - 3iT - 29T^{2} \) |
| 31 | \( 1 + (-0.464 + 0.267i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (1.26 + 4.73i)T + (-32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + 0.464iT - 41T^{2} \) |
| 43 | \( 1 + (5.83 + 5.83i)T + 43iT^{2} \) |
| 47 | \( 1 + (-0.633 + 0.169i)T + (40.7 - 23.5i)T^{2} \) |
| 53 | \( 1 + (1.83 - 6.83i)T + (-45.8 - 26.5i)T^{2} \) |
| 59 | \( 1 + (-1.09 - 1.90i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (7.33 + 4.23i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.13 - 0.303i)T + (58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 - 4.73T + 71T^{2} \) |
| 73 | \( 1 + (-3.46 - 0.928i)T + (63.2 + 36.5i)T^{2} \) |
| 79 | \( 1 + (5.83 + 3.36i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-3.09 + 3.09i)T - 83iT^{2} \) |
| 89 | \( 1 + (-8.33 + 14.4i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-7.92 - 7.92i)T + 97iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−16.87953017754252443824313521250, −16.04318428545722760705000887064, −14.50888365694594072447154882282, −13.36923635569328896728367211284, −12.35867052808607800355457882741, −10.64131038979286408187379748068, −9.016155391805571685312311114409, −7.02713094948501020345620315248, −6.12742042860604732342413657475, −5.02892437117064729044505224360,
2.87831884721365919588530969877, 5.15100185885921508299932878107, 6.64196071871561793304760132804, 9.605355614521322375568214136091, 10.44769742647340497977959157926, 11.39537090770584928811341159329, 12.60282445755374996299588715303, 13.46302558792333353113703021945, 15.18163927525137493244049735532, 16.64944998724582835828711567204