Properties

Label 8-35e4-1.1-c1e4-0-1
Degree $8$
Conductor $1500625$
Sign $1$
Analytic cond. $0.00610071$
Root an. cond. $0.528655$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 8·4-s + 4·7-s − 16·8-s − 4·11-s − 16·14-s + 36·16-s + 16·22-s + 8·23-s + 32·28-s − 64·32-s − 24·37-s − 12·43-s − 32·44-s − 32·46-s + 8·49-s + 4·53-s − 64·56-s + 96·64-s − 4·67-s − 24·71-s + 96·74-s − 16·77-s + 17·81-s + 48·86-s + 64·88-s + 64·92-s + ⋯
L(s)  = 1  − 2.82·2-s + 4·4-s + 1.51·7-s − 5.65·8-s − 1.20·11-s − 4.27·14-s + 9·16-s + 3.41·22-s + 1.66·23-s + 6.04·28-s − 11.3·32-s − 3.94·37-s − 1.82·43-s − 4.82·44-s − 4.71·46-s + 8/7·49-s + 0.549·53-s − 8.55·56-s + 12·64-s − 0.488·67-s − 2.84·71-s + 11.1·74-s − 1.82·77-s + 17/9·81-s + 5.17·86-s + 6.82·88-s + 6.67·92-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1500625 ^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1500625 ^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(1500625\)    =    \(5^{4} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(0.00610071\)
Root analytic conductor: \(0.528655\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 1500625,\ (\ :1/2, 1/2, 1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.08940827819\)
\(L(\frac12)\) \(\approx\) \(0.08940827819\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad5$C_2^2$ \( 1 + p^{2} T^{4} \)
7$C_2^2$ \( 1 - 4 T + 8 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
good2$C_2^2$ \( ( 1 + p T + p T^{2} + p^{2} T^{3} + p^{2} T^{4} )^{2} \)
3$C_2^3$ \( 1 - 17 T^{4} + p^{4} T^{8} \)
11$C_2$ \( ( 1 + T + p T^{2} )^{4} \)
13$C_2^3$ \( 1 + 103 T^{4} + p^{4} T^{8} \)
17$C_2^3$ \( 1 + 263 T^{4} + p^{4} T^{8} \)
19$C_2^2$ \( ( 1 + 28 T^{2} + p^{2} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - 4 T + 8 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 - 49 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 - 52 T^{2} + p^{2} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 + 12 T + 72 T^{2} + 12 p T^{3} + p^{2} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 + 8 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 + 6 T + 18 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
47$C_2^3$ \( 1 - 2017 T^{4} + p^{4} T^{8} \)
53$C_2^2$ \( ( 1 - 2 T + 2 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 + 28 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 - 82 T^{2} + p^{2} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
71$C_2$ \( ( 1 + 6 T + p T^{2} )^{4} \)
73$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \)
79$C_2^2$ \( ( 1 + 11 T^{2} + p^{2} T^{4} )^{2} \)
83$C_2^3$ \( 1 + 7538 T^{4} + p^{4} T^{8} \)
89$C_2^2$ \( ( 1 + 138 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2^3$ \( 1 + 16903 T^{4} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.32676045744168026200468324578, −11.98832914484567149905474922867, −11.83616758473911985107263360753, −11.45229553346159824489309456196, −11.06694238668489043531651720064, −10.58209303738455575164574949203, −10.50833723239882525662713597838, −10.16812235815551413298297690346, −9.920579216029164867063356025505, −9.238250136225366813809977809960, −9.126247062444299222986819673632, −8.784546719314304664614993136090, −8.524147519473872321912538499874, −8.175085457484967238510962436060, −8.071770588726477605787112555276, −7.45845671624323933270033329055, −6.94729152762131401251943129619, −6.93564282090983517655828207269, −6.04415488762146579249464185117, −5.61138339060652986428905421835, −5.16726999488233885655867866114, −4.76830288810563033065637744208, −3.37951316042159346516949348695, −3.02738172602077541111222636184, −1.81797194049574087688155293048, 1.81797194049574087688155293048, 3.02738172602077541111222636184, 3.37951316042159346516949348695, 4.76830288810563033065637744208, 5.16726999488233885655867866114, 5.61138339060652986428905421835, 6.04415488762146579249464185117, 6.93564282090983517655828207269, 6.94729152762131401251943129619, 7.45845671624323933270033329055, 8.071770588726477605787112555276, 8.175085457484967238510962436060, 8.524147519473872321912538499874, 8.784546719314304664614993136090, 9.126247062444299222986819673632, 9.238250136225366813809977809960, 9.920579216029164867063356025505, 10.16812235815551413298297690346, 10.50833723239882525662713597838, 10.58209303738455575164574949203, 11.06694238668489043531651720064, 11.45229553346159824489309456196, 11.83616758473911985107263360753, 11.98832914484567149905474922867, 12.32676045744168026200468324578

Graph of the $Z$-function along the critical line