| L(s) = 1 | + (0.158 − 0.275i)5-s + (2.93 − 1.69i)7-s + (−0.642 + 0.370i)11-s + (−2.59 − 1.5i)13-s + 4.24i·17-s − 2.57·19-s + (−2.02 + 3.50i)23-s + (2.44 + 4.24i)25-s + (4.01 + 6.94i)29-s + (4.24 + 2.45i)31-s − 1.07i·35-s − 7.34i·37-s + (0.825 + 0.476i)41-s + (3.50 + 6.06i)43-s + (5.15 + 8.93i)47-s + ⋯ |
| L(s) = 1 | + (0.0710 − 0.123i)5-s + (1.10 − 0.639i)7-s + (−0.193 + 0.111i)11-s + (−0.720 − 0.416i)13-s + 1.02i·17-s − 0.589·19-s + (−0.421 + 0.730i)23-s + (0.489 + 0.848i)25-s + (0.745 + 1.29i)29-s + (0.762 + 0.440i)31-s − 0.181i·35-s − 1.20i·37-s + (0.128 + 0.0744i)41-s + (0.533 + 0.924i)43-s + (0.752 + 1.30i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3456 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.885 - 0.463i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3456 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.885 - 0.463i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.983016399\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.983016399\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| good | 5 | \( 1 + (-0.158 + 0.275i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (-2.93 + 1.69i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (0.642 - 0.370i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (2.59 + 1.5i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 - 4.24iT - 17T^{2} \) |
| 19 | \( 1 + 2.57T + 19T^{2} \) |
| 23 | \( 1 + (2.02 - 3.50i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.01 - 6.94i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-4.24 - 2.45i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 7.34iT - 37T^{2} \) |
| 41 | \( 1 + (-0.825 - 0.476i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-3.50 - 6.06i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-5.15 - 8.93i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 5.51T + 53T^{2} \) |
| 59 | \( 1 + (-3.50 - 2.02i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (7.79 - 4.5i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-6.36 + 11.0i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 13.5T + 71T^{2} \) |
| 73 | \( 1 + 6.44T + 73T^{2} \) |
| 79 | \( 1 + (-8.29 + 4.78i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-2.21 + 1.27i)T + (41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 14.6iT - 89T^{2} \) |
| 97 | \( 1 + (5.62 + 9.74i)T + (-48.5 + 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.579583248817313168289586923400, −7.78917099069220560270593924432, −7.41022151219835462853331573198, −6.42326620447304530864296728333, −5.51798929398437547635031993713, −4.79571946570976385554567806052, −4.15060245019902001193655069310, −3.10092496601599544585536756939, −1.96208118270159376061571938253, −1.06021785133177376723052863279,
0.69004795984492349700182127657, 2.31203923928941973878717151394, 2.49069369525019818235971182525, 4.06627094297594168491111624901, 4.76412547183887113869495951126, 5.36581260761710039055237343206, 6.36804184286718428389131386890, 6.98833217094630580059966981850, 8.055164167002678984130918413864, 8.338265090583313199044457478630