L(s) = 1 | + (1.19 − 0.544i)2-s + (0.281 + 0.959i)3-s + (−0.185 + 0.213i)4-s + (1.80 + 1.32i)5-s + (0.858 + 0.990i)6-s + (0.0307 − 0.00441i)7-s + (−0.842 + 2.87i)8-s + (−0.841 + 0.540i)9-s + (2.86 + 0.593i)10-s + (−0.773 + 1.69i)11-s + (−0.257 − 0.117i)12-s + (−3.64 − 0.523i)13-s + (0.0341 − 0.0219i)14-s + (−0.760 + 2.10i)15-s + (0.477 + 3.32i)16-s + (3.69 − 3.20i)17-s + ⋯ |
L(s) = 1 | + (0.842 − 0.384i)2-s + (0.162 + 0.553i)3-s + (−0.0925 + 0.106i)4-s + (0.806 + 0.591i)5-s + (0.350 + 0.404i)6-s + (0.0116 − 0.00166i)7-s + (−0.297 + 1.01i)8-s + (−0.280 + 0.180i)9-s + (0.907 + 0.187i)10-s + (−0.233 + 0.510i)11-s + (−0.0742 − 0.0339i)12-s + (−1.00 − 0.145i)13-s + (0.00913 − 0.00587i)14-s + (−0.196 + 0.542i)15-s + (0.119 + 0.830i)16-s + (0.897 − 0.777i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 345 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.671 - 0.740i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 345 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.671 - 0.740i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.93776 + 0.858570i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.93776 + 0.858570i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.281 - 0.959i)T \) |
| 5 | \( 1 + (-1.80 - 1.32i)T \) |
| 23 | \( 1 + (0.304 + 4.78i)T \) |
good | 2 | \( 1 + (-1.19 + 0.544i)T + (1.30 - 1.51i)T^{2} \) |
| 7 | \( 1 + (-0.0307 + 0.00441i)T + (6.71 - 1.97i)T^{2} \) |
| 11 | \( 1 + (0.773 - 1.69i)T + (-7.20 - 8.31i)T^{2} \) |
| 13 | \( 1 + (3.64 + 0.523i)T + (12.4 + 3.66i)T^{2} \) |
| 17 | \( 1 + (-3.69 + 3.20i)T + (2.41 - 16.8i)T^{2} \) |
| 19 | \( 1 + (-4.16 + 4.80i)T + (-2.70 - 18.8i)T^{2} \) |
| 29 | \( 1 + (-3.14 - 3.63i)T + (-4.12 + 28.7i)T^{2} \) |
| 31 | \( 1 + (-8.92 - 2.62i)T + (26.0 + 16.7i)T^{2} \) |
| 37 | \( 1 + (3.98 + 6.19i)T + (-15.3 + 33.6i)T^{2} \) |
| 41 | \( 1 + (2.14 + 1.38i)T + (17.0 + 37.2i)T^{2} \) |
| 43 | \( 1 + (-1.96 - 6.69i)T + (-36.1 + 23.2i)T^{2} \) |
| 47 | \( 1 + 8.76iT - 47T^{2} \) |
| 53 | \( 1 + (0.438 - 0.0630i)T + (50.8 - 14.9i)T^{2} \) |
| 59 | \( 1 + (-1.82 + 12.7i)T + (-56.6 - 16.6i)T^{2} \) |
| 61 | \( 1 + (6.68 + 1.96i)T + (51.3 + 32.9i)T^{2} \) |
| 67 | \( 1 + (7.01 - 3.20i)T + (43.8 - 50.6i)T^{2} \) |
| 71 | \( 1 + (3.37 + 7.39i)T + (-46.4 + 53.6i)T^{2} \) |
| 73 | \( 1 + (-1.33 - 1.15i)T + (10.3 + 72.2i)T^{2} \) |
| 79 | \( 1 + (0.400 - 2.78i)T + (-75.7 - 22.2i)T^{2} \) |
| 83 | \( 1 + (-4.73 - 7.37i)T + (-34.4 + 75.4i)T^{2} \) |
| 89 | \( 1 + (-5.24 + 1.54i)T + (74.8 - 48.1i)T^{2} \) |
| 97 | \( 1 + (9.44 - 14.6i)T + (-40.2 - 88.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.80131850105933000036961036767, −10.71107413188940910283065039371, −9.893181403774669247411181102577, −9.118363434947174808865767909970, −7.83057039427043814205894931155, −6.70463941777447956648408166163, −5.21639362071816226848672142285, −4.80911517952746346480065474182, −3.19001725578877845255721743288, −2.51614555873468997777845721251,
1.32605941631828573293932890654, 3.12034946027976636913086976584, 4.58832553156583263059574267918, 5.63944688666111436070132047663, 6.14652083280834080128161144812, 7.47449755292804583930143386912, 8.457942734968651050585563316248, 9.737835078207039469110895768422, 10.10813658211090461788377740588, 11.95914201831626984936377374864