Properties

Label 2-3432-1.1-c1-0-42
Degree $2$
Conductor $3432$
Sign $1$
Analytic cond. $27.4046$
Root an. cond. $5.23494$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 4.26·5-s + 0.932·7-s + 9-s + 11-s + 13-s + 4.26·15-s + 7.19·17-s + 6.90·19-s + 0.932·21-s − 2.93·23-s + 13.1·25-s + 27-s − 9.88·29-s − 8.23·31-s + 33-s + 3.97·35-s − 1.86·37-s + 39-s + 1.06·41-s − 5.30·43-s + 4.26·45-s − 11.1·47-s − 6.13·49-s + 7.19·51-s + 9.24·53-s + 4.26·55-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.90·5-s + 0.352·7-s + 0.333·9-s + 0.301·11-s + 0.277·13-s + 1.10·15-s + 1.74·17-s + 1.58·19-s + 0.203·21-s − 0.611·23-s + 2.63·25-s + 0.192·27-s − 1.83·29-s − 1.47·31-s + 0.174·33-s + 0.671·35-s − 0.306·37-s + 0.160·39-s + 0.166·41-s − 0.809·43-s + 0.635·45-s − 1.61·47-s − 0.875·49-s + 1.00·51-s + 1.26·53-s + 0.574·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3432 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3432 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3432\)    =    \(2^{3} \cdot 3 \cdot 11 \cdot 13\)
Sign: $1$
Analytic conductor: \(27.4046\)
Root analytic conductor: \(5.23494\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3432,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.945936773\)
\(L(\frac12)\) \(\approx\) \(3.945936773\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
11 \( 1 - T \)
13 \( 1 - T \)
good5 \( 1 - 4.26T + 5T^{2} \)
7 \( 1 - 0.932T + 7T^{2} \)
17 \( 1 - 7.19T + 17T^{2} \)
19 \( 1 - 6.90T + 19T^{2} \)
23 \( 1 + 2.93T + 23T^{2} \)
29 \( 1 + 9.88T + 29T^{2} \)
31 \( 1 + 8.23T + 31T^{2} \)
37 \( 1 + 1.86T + 37T^{2} \)
41 \( 1 - 1.06T + 41T^{2} \)
43 \( 1 + 5.30T + 43T^{2} \)
47 \( 1 + 11.1T + 47T^{2} \)
53 \( 1 - 9.24T + 53T^{2} \)
59 \( 1 - 9.26T + 59T^{2} \)
61 \( 1 + 14.5T + 61T^{2} \)
67 \( 1 + 2.26T + 67T^{2} \)
71 \( 1 + 7.23T + 71T^{2} \)
73 \( 1 + 6.17T + 73T^{2} \)
79 \( 1 + 2.62T + 79T^{2} \)
83 \( 1 + 8.52T + 83T^{2} \)
89 \( 1 - 14.8T + 89T^{2} \)
97 \( 1 - 6.71T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.827617146207419840637240206467, −7.78041068619259400479771583532, −7.23871734455867759417152451078, −6.19341823460748886518341447107, −5.51991744798561283260441994854, −5.12296594422693418466372212350, −3.66985601006490282570870239415, −3.01009189152801111287279484734, −1.79606729833594650756065354432, −1.40069348735935799722051889392, 1.40069348735935799722051889392, 1.79606729833594650756065354432, 3.01009189152801111287279484734, 3.66985601006490282570870239415, 5.12296594422693418466372212350, 5.51991744798561283260441994854, 6.19341823460748886518341447107, 7.23871734455867759417152451078, 7.78041068619259400479771583532, 8.827617146207419840637240206467

Graph of the $Z$-function along the critical line