Properties

Label 2-3432-1.1-c1-0-21
Degree $2$
Conductor $3432$
Sign $1$
Analytic cond. $27.4046$
Root an. cond. $5.23494$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 2.49·5-s − 2.46·7-s + 9-s + 11-s + 13-s + 2.49·15-s + 2.02·17-s − 6.62·19-s − 2.46·21-s + 0.469·23-s + 1.21·25-s + 27-s + 10.4·29-s + 3.66·31-s + 33-s − 6.15·35-s + 4.93·37-s + 39-s + 4.46·41-s + 3.19·43-s + 2.49·45-s + 4.25·47-s − 0.902·49-s + 2.02·51-s + 0.685·53-s + 2.49·55-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.11·5-s − 0.933·7-s + 0.333·9-s + 0.301·11-s + 0.277·13-s + 0.643·15-s + 0.490·17-s − 1.51·19-s − 0.538·21-s + 0.0978·23-s + 0.243·25-s + 0.192·27-s + 1.93·29-s + 0.657·31-s + 0.174·33-s − 1.04·35-s + 0.811·37-s + 0.160·39-s + 0.697·41-s + 0.487·43-s + 0.371·45-s + 0.620·47-s − 0.128·49-s + 0.283·51-s + 0.0940·53-s + 0.336·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3432 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3432 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3432\)    =    \(2^{3} \cdot 3 \cdot 11 \cdot 13\)
Sign: $1$
Analytic conductor: \(27.4046\)
Root analytic conductor: \(5.23494\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3432,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.759245576\)
\(L(\frac12)\) \(\approx\) \(2.759245576\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
11 \( 1 - T \)
13 \( 1 - T \)
good5 \( 1 - 2.49T + 5T^{2} \)
7 \( 1 + 2.46T + 7T^{2} \)
17 \( 1 - 2.02T + 17T^{2} \)
19 \( 1 + 6.62T + 19T^{2} \)
23 \( 1 - 0.469T + 23T^{2} \)
29 \( 1 - 10.4T + 29T^{2} \)
31 \( 1 - 3.66T + 31T^{2} \)
37 \( 1 - 4.93T + 37T^{2} \)
41 \( 1 - 4.46T + 41T^{2} \)
43 \( 1 - 3.19T + 43T^{2} \)
47 \( 1 - 4.25T + 47T^{2} \)
53 \( 1 - 0.685T + 53T^{2} \)
59 \( 1 - 10.8T + 59T^{2} \)
61 \( 1 + 0.830T + 61T^{2} \)
67 \( 1 + 0.493T + 67T^{2} \)
71 \( 1 - 8.01T + 71T^{2} \)
73 \( 1 - 5.78T + 73T^{2} \)
79 \( 1 + 15.9T + 79T^{2} \)
83 \( 1 + 4.98T + 83T^{2} \)
89 \( 1 - 6.26T + 89T^{2} \)
97 \( 1 - 1.69T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.701774756825405244153282284033, −8.021757217231239652639534692531, −6.92434228623305144267093403929, −6.32586096513983611273394424804, −5.85126537071049876142110026898, −4.68088004651073315188684663565, −3.86608972591089108070543241358, −2.83973341198682155659337691105, −2.22409291745404612430374307131, −0.987142032986456971872504186071, 0.987142032986456971872504186071, 2.22409291745404612430374307131, 2.83973341198682155659337691105, 3.86608972591089108070543241358, 4.68088004651073315188684663565, 5.85126537071049876142110026898, 6.32586096513983611273394424804, 6.92434228623305144267093403929, 8.021757217231239652639534692531, 8.701774756825405244153282284033

Graph of the $Z$-function along the critical line