Properties

Label 2-7e3-49.44-c1-0-8
Degree $2$
Conductor $343$
Sign $0.814 + 0.580i$
Analytic cond. $2.73886$
Root an. cond. $1.65495$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.44 + 0.218i)2-s + (0.807 + 0.550i)3-s + (0.142 − 0.0440i)4-s + (0.0688 − 0.919i)5-s + (−1.29 − 0.621i)6-s + (2.44 − 1.17i)8-s + (−0.746 − 1.90i)9-s + (0.100 + 1.34i)10-s + (−0.0755 + 0.192i)11-s + (0.139 + 0.0430i)12-s + (−1.07 − 1.35i)13-s + (0.561 − 0.704i)15-s + (−3.53 + 2.40i)16-s + (3.76 − 3.49i)17-s + (1.49 + 2.59i)18-s + (1.62 − 2.81i)19-s + ⋯
L(s)  = 1  + (−1.02 + 0.154i)2-s + (0.466 + 0.317i)3-s + (0.0714 − 0.0220i)4-s + (0.0308 − 0.411i)5-s + (−0.527 − 0.253i)6-s + (0.864 − 0.416i)8-s + (−0.248 − 0.634i)9-s + (0.0319 + 0.426i)10-s + (−0.0227 + 0.0580i)11-s + (0.0403 + 0.0124i)12-s + (−0.299 − 0.375i)13-s + (0.145 − 0.181i)15-s + (−0.883 + 0.602i)16-s + (0.912 − 0.846i)17-s + (0.353 + 0.611i)18-s + (0.372 − 0.646i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 343 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.814 + 0.580i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 343 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.814 + 0.580i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(343\)    =    \(7^{3}\)
Sign: $0.814 + 0.580i$
Analytic conductor: \(2.73886\)
Root analytic conductor: \(1.65495\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{343} (79, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 343,\ (\ :1/2),\ 0.814 + 0.580i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.768637 - 0.246118i\)
\(L(\frac12)\) \(\approx\) \(0.768637 - 0.246118i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
good2 \( 1 + (1.44 - 0.218i)T + (1.91 - 0.589i)T^{2} \)
3 \( 1 + (-0.807 - 0.550i)T + (1.09 + 2.79i)T^{2} \)
5 \( 1 + (-0.0688 + 0.919i)T + (-4.94 - 0.745i)T^{2} \)
11 \( 1 + (0.0755 - 0.192i)T + (-8.06 - 7.48i)T^{2} \)
13 \( 1 + (1.07 + 1.35i)T + (-2.89 + 12.6i)T^{2} \)
17 \( 1 + (-3.76 + 3.49i)T + (1.27 - 16.9i)T^{2} \)
19 \( 1 + (-1.62 + 2.81i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (-0.785 - 0.728i)T + (1.71 + 22.9i)T^{2} \)
29 \( 1 + (-1.32 - 5.80i)T + (-26.1 + 12.5i)T^{2} \)
31 \( 1 + (4.19 + 7.26i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 + (-7.83 - 2.41i)T + (30.5 + 20.8i)T^{2} \)
41 \( 1 + (-10.9 + 5.28i)T + (25.5 - 32.0i)T^{2} \)
43 \( 1 + (8.14 + 3.92i)T + (26.8 + 33.6i)T^{2} \)
47 \( 1 + (-5.30 + 0.800i)T + (44.9 - 13.8i)T^{2} \)
53 \( 1 + (0.791 - 0.244i)T + (43.7 - 29.8i)T^{2} \)
59 \( 1 + (-0.368 - 4.91i)T + (-58.3 + 8.79i)T^{2} \)
61 \( 1 + (8.44 + 2.60i)T + (50.4 + 34.3i)T^{2} \)
67 \( 1 + (2.91 + 5.04i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 + (2.33 - 10.2i)T + (-63.9 - 30.8i)T^{2} \)
73 \( 1 + (9.23 + 1.39i)T + (69.7 + 21.5i)T^{2} \)
79 \( 1 + (2.27 - 3.94i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 + (10.0 - 12.5i)T + (-18.4 - 80.9i)T^{2} \)
89 \( 1 + (2.76 + 7.05i)T + (-65.2 + 60.5i)T^{2} \)
97 \( 1 + 5.84T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.20449863127546389423013087859, −10.11423901449277852737375915578, −9.333974730410419411277068192448, −8.904757239700548506666746857229, −7.84161897219302332090136731854, −7.05362282140161049143988278332, −5.49848102371963493525680561683, −4.30672330641843052809934712794, −2.95132522296343643097052847831, −0.844234867888643360719770452643, 1.53497983031199227177708960996, 2.90078112425359606357595001389, 4.55200205212648920566658773630, 5.88610119889549135699441552071, 7.32694580418595429009707692684, 7.959773525873437727790359497967, 8.767575057586506011722410799987, 9.741822284706555472530494776425, 10.51892845939740681527286468390, 11.26235665694029531403217430522

Graph of the $Z$-function along the critical line