L(s) = 1 | + (1.63 − 1.11i)2-s + (1.94 − 1.80i)3-s + (0.698 − 1.77i)4-s + (−1.54 − 0.476i)5-s + (1.16 − 5.11i)6-s + (0.0391 + 0.171i)8-s + (0.301 − 4.02i)9-s + (−3.05 + 0.941i)10-s + (0.330 + 4.41i)11-s + (−1.85 − 4.71i)12-s + (1.03 + 0.498i)13-s + (−3.86 + 1.85i)15-s + (3.05 + 2.83i)16-s + (−6.42 − 0.968i)17-s + (−3.99 − 6.91i)18-s + (0.938 − 1.62i)19-s + ⋯ |
L(s) = 1 | + (1.15 − 0.787i)2-s + (1.12 − 1.04i)3-s + (0.349 − 0.889i)4-s + (−0.690 − 0.212i)5-s + (0.476 − 2.08i)6-s + (0.0138 + 0.0605i)8-s + (0.100 − 1.34i)9-s + (−0.965 + 0.297i)10-s + (0.0997 + 1.33i)11-s + (−0.534 − 1.36i)12-s + (0.287 + 0.138i)13-s + (−0.996 + 0.480i)15-s + (0.764 + 0.709i)16-s + (−1.55 − 0.234i)17-s + (−0.940 − 1.62i)18-s + (0.215 − 0.372i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 343 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.159 + 0.987i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 343 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.159 + 0.987i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.89162 - 2.22200i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.89162 - 2.22200i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
good | 2 | \( 1 + (-1.63 + 1.11i)T + (0.730 - 1.86i)T^{2} \) |
| 3 | \( 1 + (-1.94 + 1.80i)T + (0.224 - 2.99i)T^{2} \) |
| 5 | \( 1 + (1.54 + 0.476i)T + (4.13 + 2.81i)T^{2} \) |
| 11 | \( 1 + (-0.330 - 4.41i)T + (-10.8 + 1.63i)T^{2} \) |
| 13 | \( 1 + (-1.03 - 0.498i)T + (8.10 + 10.1i)T^{2} \) |
| 17 | \( 1 + (6.42 + 0.968i)T + (16.2 + 5.01i)T^{2} \) |
| 19 | \( 1 + (-0.938 + 1.62i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.292 + 0.0440i)T + (21.9 - 6.77i)T^{2} \) |
| 29 | \( 1 + (-1.70 + 2.13i)T + (-6.45 - 28.2i)T^{2} \) |
| 31 | \( 1 + (-2.96 - 5.14i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (3.31 + 8.45i)T + (-27.1 + 25.1i)T^{2} \) |
| 41 | \( 1 + (-0.655 - 2.87i)T + (-36.9 + 17.7i)T^{2} \) |
| 43 | \( 1 + (0.200 - 0.878i)T + (-38.7 - 18.6i)T^{2} \) |
| 47 | \( 1 + (1.40 - 0.958i)T + (17.1 - 43.7i)T^{2} \) |
| 53 | \( 1 + (0.791 - 2.01i)T + (-38.8 - 36.0i)T^{2} \) |
| 59 | \( 1 + (-2.62 + 0.809i)T + (48.7 - 33.2i)T^{2} \) |
| 61 | \( 1 + (1.18 + 3.01i)T + (-44.7 + 41.4i)T^{2} \) |
| 67 | \( 1 + (-1.66 - 2.88i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (7.37 + 9.25i)T + (-15.7 + 69.2i)T^{2} \) |
| 73 | \( 1 + (4.72 + 3.22i)T + (26.6 + 67.9i)T^{2} \) |
| 79 | \( 1 + (-5.25 + 9.10i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (6.48 - 3.12i)T + (51.7 - 64.8i)T^{2} \) |
| 89 | \( 1 + (1.01 - 13.5i)T + (-88.0 - 13.2i)T^{2} \) |
| 97 | \( 1 - 3.26T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.75384896338955808647433454341, −10.69478262337019024420762947316, −9.270950853367805105367741205963, −8.366528294229920408096620451262, −7.45557371086522447144556024190, −6.54065653569245561874305857031, −4.79911694166683231940665681169, −3.98138202849713013725699092870, −2.72653855103317705552831995285, −1.81874717644909164055781540798,
3.00633484117351128480108816591, 3.79355832166775182186994456062, 4.51324845583860934228913027004, 5.77268177188957918451775097833, 6.86117697442867118637854092157, 8.106025586578720749202454323060, 8.694880840858424278638262366952, 9.855344054140434811875171287306, 10.89392084088416722194160044594, 11.81570746058608807728018891967