Properties

Label 2-3420-5.4-c1-0-34
Degree $2$
Conductor $3420$
Sign $-0.795 + 0.605i$
Analytic cond. $27.3088$
Root an. cond. $5.22578$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.77 + 1.35i)5-s − 4.11i·7-s − 1.61·11-s + 3.40i·13-s + 1.06i·17-s + 19-s + 5.34i·23-s + (1.33 − 4.81i)25-s + 7.98·29-s + 3.64·31-s + (5.56 + 7.31i)35-s − 7.59i·37-s − 5.94·41-s − 9.22i·43-s − 7.16i·47-s + ⋯
L(s)  = 1  + (−0.795 + 0.605i)5-s − 1.55i·7-s − 0.486·11-s + 0.943i·13-s + 0.257i·17-s + 0.229·19-s + 1.11i·23-s + (0.266 − 0.963i)25-s + 1.48·29-s + 0.654·31-s + (0.941 + 1.23i)35-s − 1.24i·37-s − 0.928·41-s − 1.40i·43-s − 1.04i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3420 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.795 + 0.605i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3420 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.795 + 0.605i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3420\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 19\)
Sign: $-0.795 + 0.605i$
Analytic conductor: \(27.3088\)
Root analytic conductor: \(5.22578\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3420} (1369, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3420,\ (\ :1/2),\ -0.795 + 0.605i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5044139734\)
\(L(\frac12)\) \(\approx\) \(0.5044139734\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + (1.77 - 1.35i)T \)
19 \( 1 - T \)
good7 \( 1 + 4.11iT - 7T^{2} \)
11 \( 1 + 1.61T + 11T^{2} \)
13 \( 1 - 3.40iT - 13T^{2} \)
17 \( 1 - 1.06iT - 17T^{2} \)
23 \( 1 - 5.34iT - 23T^{2} \)
29 \( 1 - 7.98T + 29T^{2} \)
31 \( 1 - 3.64T + 31T^{2} \)
37 \( 1 + 7.59iT - 37T^{2} \)
41 \( 1 + 5.94T + 41T^{2} \)
43 \( 1 + 9.22iT - 43T^{2} \)
47 \( 1 + 7.16iT - 47T^{2} \)
53 \( 1 - 2.57iT - 53T^{2} \)
59 \( 1 + 9.11T + 59T^{2} \)
61 \( 1 + 10.1T + 61T^{2} \)
67 \( 1 + 9.11iT - 67T^{2} \)
71 \( 1 + 12.4T + 71T^{2} \)
73 \( 1 - 15.2iT - 73T^{2} \)
79 \( 1 - 6.34T + 79T^{2} \)
83 \( 1 + 6.54iT - 83T^{2} \)
89 \( 1 + 17.0T + 89T^{2} \)
97 \( 1 - 7.29iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.114027371095451369067783579138, −7.45203924160519087898942383492, −7.00301463949982950230155194175, −6.30926440475168397908316889524, −5.10151628285560772062774949135, −4.22315132064243463472121553410, −3.74223263663290809844745095699, −2.81686060262305886963747080514, −1.46807952822582009737909210380, −0.16521087053562095850742936691, 1.23578693739334271217359748885, 2.74470196586894722042377060590, 3.06672487906058611957567858828, 4.60758905599001804790399482912, 4.92089049660854882253349539220, 5.86864375138608808631244881830, 6.52741087811733337885374343499, 7.70385726569543052663804828905, 8.261786543457444122598092366076, 8.664351639650643311548519012879

Graph of the $Z$-function along the critical line