L(s) = 1 | + (0.382 + 0.923i)2-s + (0.130 + 0.991i)3-s + (−0.707 + 0.707i)4-s + (−0.866 − 0.5i)5-s + (−0.866 + 0.5i)6-s + (−0.923 − 0.382i)8-s + (−0.965 + 0.258i)9-s + (0.130 − 0.991i)10-s + (−0.965 − 1.67i)11-s + (−0.793 − 0.608i)12-s + (0.608 − 1.05i)13-s + (0.382 − 0.923i)15-s − i·16-s + (−0.608 − 0.793i)18-s + i·19-s + (0.965 − 0.258i)20-s + ⋯ |
L(s) = 1 | + (0.382 + 0.923i)2-s + (0.130 + 0.991i)3-s + (−0.707 + 0.707i)4-s + (−0.866 − 0.5i)5-s + (−0.866 + 0.5i)6-s + (−0.923 − 0.382i)8-s + (−0.965 + 0.258i)9-s + (0.130 − 0.991i)10-s + (−0.965 − 1.67i)11-s + (−0.793 − 0.608i)12-s + (0.608 − 1.05i)13-s + (0.382 − 0.923i)15-s − i·16-s + (−0.608 − 0.793i)18-s + i·19-s + (0.965 − 0.258i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3420 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.984 - 0.173i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3420 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.984 - 0.173i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7960859287\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7960859287\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.382 - 0.923i)T \) |
| 3 | \( 1 + (-0.130 - 0.991i)T \) |
| 5 | \( 1 + (0.866 + 0.5i)T \) |
| 19 | \( 1 - iT \) |
good | 7 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.965 + 1.67i)T + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.608 + 1.05i)T + (-0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 - 1.58T + T^{2} \) |
| 41 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + 1.98iT - T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.707 + 1.22i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (1.60 + 0.923i)T + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (0.923 + 1.60i)T + (-0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.417813573275161747089251985850, −8.193110254003608582452800741098, −7.66625896251294504926527445832, −6.27206296432446868748527467751, −5.62372081336192727348308403322, −5.14979177883727858782639355951, −4.19546440470721653980287038473, −3.45051248215405205490879840770, −3.00742623109314702710638769858, −0.43716062954594850934590561465,
1.29316703067997315386783536775, 2.43706979737001561629219522435, 2.84844931626722532432815480533, 4.17653379268898894662047481877, 4.58822412486273019525767748625, 5.75447035168559390294296229650, 6.61550033000681164908566651480, 7.32090816541338740713026654139, 7.88010918233863539768105324049, 8.882629177164387529449580377658