L(s) = 1 | + (−0.960 − 0.697i)2-s + (−0.349 + 1.07i)3-s + (−0.182 − 0.562i)4-s + (−1.04 + 0.762i)5-s + (1.08 − 0.789i)6-s + (−1.13 − 3.49i)7-s + (−0.950 + 2.92i)8-s + (1.38 + 1.00i)9-s + 1.53·10-s + (−3.20 + 0.853i)11-s + 0.670·12-s + (4.94 + 3.59i)13-s + (−1.34 + 4.14i)14-s + (−0.454 − 1.39i)15-s + (1.99 − 1.44i)16-s + (−1.97 + 1.43i)17-s + ⋯ |
L(s) = 1 | + (−0.678 − 0.493i)2-s + (−0.202 + 0.621i)3-s + (−0.0914 − 0.281i)4-s + (−0.469 + 0.341i)5-s + (0.443 − 0.322i)6-s + (−0.428 − 1.31i)7-s + (−0.336 + 1.03i)8-s + (0.463 + 0.336i)9-s + 0.486·10-s + (−0.966 + 0.257i)11-s + 0.193·12-s + (1.37 + 0.997i)13-s + (−0.359 + 1.10i)14-s + (−0.117 − 0.360i)15-s + (0.498 − 0.362i)16-s + (−0.479 + 0.348i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 341 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0301 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 341 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0301 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.316708 + 0.307294i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.316708 + 0.307294i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 + (3.20 - 0.853i)T \) |
| 31 | \( 1 + (0.809 + 0.587i)T \) |
good | 2 | \( 1 + (0.960 + 0.697i)T + (0.618 + 1.90i)T^{2} \) |
| 3 | \( 1 + (0.349 - 1.07i)T + (-2.42 - 1.76i)T^{2} \) |
| 5 | \( 1 + (1.04 - 0.762i)T + (1.54 - 4.75i)T^{2} \) |
| 7 | \( 1 + (1.13 + 3.49i)T + (-5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (-4.94 - 3.59i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (1.97 - 1.43i)T + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (1.06 - 3.26i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 + 6.88T + 23T^{2} \) |
| 29 | \( 1 + (-3.14 - 9.66i)T + (-23.4 + 17.0i)T^{2} \) |
| 37 | \( 1 + (0.107 + 0.331i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (-2.24 + 6.89i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 - 7.12T + 43T^{2} \) |
| 47 | \( 1 + (1.69 - 5.20i)T + (-38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (3.58 + 2.60i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (-0.176 - 0.542i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (5.80 - 4.21i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 + 5.96T + 67T^{2} \) |
| 71 | \( 1 + (-9.56 + 6.94i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (3.18 + 9.80i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (-6.31 - 4.58i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (11.4 - 8.35i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 - 0.0753T + 89T^{2} \) |
| 97 | \( 1 + (12.2 + 8.89i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.08155841972264415052787648097, −10.75216696818863702594987307976, −10.18923685727460971859208364902, −9.256603015118485451740850610407, −8.124940894051581754518592709257, −7.14997988513885092258526155035, −5.90619751450810780386432728877, −4.48885661953961819204238497566, −3.65642837848483623366055449966, −1.66153332322902507968771582908,
0.40060934808717325589053932219, 2.70466105527783520710227662733, 4.14120658380775220723193718295, 5.86285140420248378488723570370, 6.45907468379782570680744060496, 7.87719213347972591356740534009, 8.229080619549784075313468037570, 9.174056927655346882213222096624, 10.14401070080152932705811738952, 11.51624566475804190083164070659