L(s) = 1 | + (−0.382 + 0.923i)2-s + (−1.49 + 0.996i)3-s + (−0.707 − 0.707i)4-s + (−0.349 − 1.75i)6-s + (0.923 − 0.382i)8-s + (0.848 − 2.04i)9-s + (−1.85 + 0.369i)11-s + (1.75 + 0.349i)12-s + i·16-s + (−0.793 + 0.608i)17-s + (1.56 + 1.56i)18-s + (−0.739 − 1.78i)19-s + (0.369 − 1.85i)22-s + (−0.996 + 1.49i)24-s + (0.426 + 2.14i)27-s + ⋯ |
L(s) = 1 | + (−0.382 + 0.923i)2-s + (−1.49 + 0.996i)3-s + (−0.707 − 0.707i)4-s + (−0.349 − 1.75i)6-s + (0.923 − 0.382i)8-s + (0.848 − 2.04i)9-s + (−1.85 + 0.369i)11-s + (1.75 + 0.349i)12-s + i·16-s + (−0.793 + 0.608i)17-s + (1.56 + 1.56i)18-s + (−0.739 − 1.78i)19-s + (0.369 − 1.85i)22-s + (−0.996 + 1.49i)24-s + (0.426 + 2.14i)27-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.139 - 0.990i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.139 - 0.990i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3457610328\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3457610328\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.382 - 0.923i)T \) |
| 5 | \( 1 \) |
| 17 | \( 1 + (0.793 - 0.608i)T \) |
good | 3 | \( 1 + (1.49 - 0.996i)T + (0.382 - 0.923i)T^{2} \) |
| 7 | \( 1 + (-0.923 + 0.382i)T^{2} \) |
| 11 | \( 1 + (1.85 - 0.369i)T + (0.923 - 0.382i)T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 19 | \( 1 + (0.739 + 1.78i)T + (-0.707 + 0.707i)T^{2} \) |
| 23 | \( 1 + (0.382 + 0.923i)T^{2} \) |
| 29 | \( 1 + (-0.382 + 0.923i)T^{2} \) |
| 31 | \( 1 + (-0.923 - 0.382i)T^{2} \) |
| 37 | \( 1 + (0.382 - 0.923i)T^{2} \) |
| 41 | \( 1 + (-1.09 - 0.732i)T + (0.382 + 0.923i)T^{2} \) |
| 43 | \( 1 + (0.292 + 0.707i)T + (-0.707 + 0.707i)T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 59 | \( 1 + (-1.70 - 0.707i)T + (0.707 + 0.707i)T^{2} \) |
| 61 | \( 1 + (0.382 + 0.923i)T^{2} \) |
| 67 | \( 1 + (-1.12 - 1.12i)T + iT^{2} \) |
| 71 | \( 1 + (0.923 + 0.382i)T^{2} \) |
| 73 | \( 1 + (-0.630 - 0.125i)T + (0.923 + 0.382i)T^{2} \) |
| 79 | \( 1 + (0.923 - 0.382i)T^{2} \) |
| 83 | \( 1 + (0.0999 - 0.241i)T + (-0.707 - 0.707i)T^{2} \) |
| 89 | \( 1 + (0.184 + 0.184i)T + iT^{2} \) |
| 97 | \( 1 + (1.08 + 0.216i)T + (0.923 + 0.382i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.934120573384056149130073424422, −8.289285095995170098490988831861, −7.18059936731498770375770429623, −6.71995404727288650671979825170, −5.79506720587231825968108865500, −5.29116271081816525899262655908, −4.64362366507436112556208617373, −4.08020917593788002752233104333, −2.43603099425304147997719650633, −0.51875836478520350967402433247,
0.62030011632183629841378090373, 1.90938501523272955790493308297, 2.59308272008480590013283952982, 3.95816828688088966498768736369, 4.98544059907328660172761561289, 5.49836035391329830054053510848, 6.32416050042496800671352503277, 7.27501895670173475968129675165, 7.905694376678152490637540705925, 8.391078428362667082845082283345