L(s) = 1 | + (−0.923 − 0.382i)2-s + (−0.630 − 0.125i)3-s + (0.707 + 0.707i)4-s + (0.534 + 0.357i)6-s + (−0.382 − 0.923i)8-s + (−0.542 − 0.224i)9-s + (−0.996 + 1.49i)11-s + (−0.357 − 0.534i)12-s + i·16-s + (−0.608 − 0.793i)17-s + (0.414 + 0.414i)18-s + (1.78 − 0.739i)19-s + (1.49 − 0.996i)22-s + (0.125 + 0.630i)24-s + (0.848 + 0.566i)27-s + ⋯ |
L(s) = 1 | + (−0.923 − 0.382i)2-s + (−0.630 − 0.125i)3-s + (0.707 + 0.707i)4-s + (0.534 + 0.357i)6-s + (−0.382 − 0.923i)8-s + (−0.542 − 0.224i)9-s + (−0.996 + 1.49i)11-s + (−0.357 − 0.534i)12-s + i·16-s + (−0.608 − 0.793i)17-s + (0.414 + 0.414i)18-s + (1.78 − 0.739i)19-s + (1.49 − 0.996i)22-s + (0.125 + 0.630i)24-s + (0.848 + 0.566i)27-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.998 + 0.0493i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.998 + 0.0493i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.09755963745\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.09755963745\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.923 + 0.382i)T \) |
| 5 | \( 1 \) |
| 17 | \( 1 + (0.608 + 0.793i)T \) |
good | 3 | \( 1 + (0.630 + 0.125i)T + (0.923 + 0.382i)T^{2} \) |
| 7 | \( 1 + (0.382 + 0.923i)T^{2} \) |
| 11 | \( 1 + (0.996 - 1.49i)T + (-0.382 - 0.923i)T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 19 | \( 1 + (-1.78 + 0.739i)T + (0.707 - 0.707i)T^{2} \) |
| 23 | \( 1 + (0.923 - 0.382i)T^{2} \) |
| 29 | \( 1 + (-0.923 - 0.382i)T^{2} \) |
| 31 | \( 1 + (0.382 - 0.923i)T^{2} \) |
| 37 | \( 1 + (0.923 + 0.382i)T^{2} \) |
| 41 | \( 1 + (1.95 - 0.389i)T + (0.923 - 0.382i)T^{2} \) |
| 43 | \( 1 + (1.70 - 0.707i)T + (0.707 - 0.707i)T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 59 | \( 1 + (-0.292 + 0.707i)T + (-0.707 - 0.707i)T^{2} \) |
| 61 | \( 1 + (0.923 - 0.382i)T^{2} \) |
| 67 | \( 1 + (0.860 + 0.860i)T + iT^{2} \) |
| 71 | \( 1 + (-0.382 + 0.923i)T^{2} \) |
| 73 | \( 1 + (0.491 + 0.735i)T + (-0.382 + 0.923i)T^{2} \) |
| 79 | \( 1 + (-0.382 - 0.923i)T^{2} \) |
| 83 | \( 1 + (-1.83 - 0.758i)T + (0.707 + 0.707i)T^{2} \) |
| 89 | \( 1 + (1.40 + 1.40i)T + iT^{2} \) |
| 97 | \( 1 + (0.216 + 0.324i)T + (-0.382 + 0.923i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.438771064669981307655621988311, −7.69185582104157406655702794105, −6.99371590612665818777070485257, −6.52964037743258972111674511437, −5.21737658521445609519993744517, −4.85352831610882918286587013366, −3.34511462072512242830054530336, −2.65559842308830557497319412332, −1.57093907702973905689385139253, −0.087219834862242580278909498387,
1.33744415208380617872864279922, 2.67550106377499794285629440518, 3.48835714792255797249919686255, 5.09169400930439595170331752414, 5.50703210138140601912943775557, 6.11769744048917570854931891347, 6.92926132617551247011220014291, 7.914209539739145653614540952900, 8.339940827573582580331670724410, 8.946594031331771097302885547857