L(s) = 1 | + (−1.16 − 1.16i)3-s + (−0.707 − 0.707i)5-s + (−2.24 + 2.24i)7-s − 0.275i·9-s + (−2.11 + 2.11i)11-s − 0.689·13-s + 1.65i·15-s + (−3.11 + 2.70i)17-s + 1.90i·19-s + 5.23·21-s + (−2.37 + 2.37i)23-s + 1.00i·25-s + (−3.82 + 3.82i)27-s + (−3.13 − 3.13i)29-s + (3.10 + 3.10i)31-s + ⋯ |
L(s) = 1 | + (−0.673 − 0.673i)3-s + (−0.316 − 0.316i)5-s + (−0.847 + 0.847i)7-s − 0.0917i·9-s + (−0.636 + 0.636i)11-s − 0.191·13-s + 0.426i·15-s + (−0.754 + 0.655i)17-s + 0.436i·19-s + 1.14·21-s + (−0.496 + 0.496i)23-s + 0.200i·25-s + (−0.735 + 0.735i)27-s + (−0.581 − 0.581i)29-s + (0.557 + 0.557i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 340 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.743 - 0.669i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 340 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.743 - 0.669i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0429421 + 0.111867i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0429421 + 0.111867i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.707 + 0.707i)T \) |
| 17 | \( 1 + (3.11 - 2.70i)T \) |
good | 3 | \( 1 + (1.16 + 1.16i)T + 3iT^{2} \) |
| 7 | \( 1 + (2.24 - 2.24i)T - 7iT^{2} \) |
| 11 | \( 1 + (2.11 - 2.11i)T - 11iT^{2} \) |
| 13 | \( 1 + 0.689T + 13T^{2} \) |
| 19 | \( 1 - 1.90iT - 19T^{2} \) |
| 23 | \( 1 + (2.37 - 2.37i)T - 23iT^{2} \) |
| 29 | \( 1 + (3.13 + 3.13i)T + 29iT^{2} \) |
| 31 | \( 1 + (-3.10 - 3.10i)T + 31iT^{2} \) |
| 37 | \( 1 + (6.24 + 6.24i)T + 37iT^{2} \) |
| 41 | \( 1 + (-3.12 + 3.12i)T - 41iT^{2} \) |
| 43 | \( 1 + 2.71iT - 43T^{2} \) |
| 47 | \( 1 + 10.0T + 47T^{2} \) |
| 53 | \( 1 - 0.432iT - 53T^{2} \) |
| 59 | \( 1 + 9.55iT - 59T^{2} \) |
| 61 | \( 1 + (-6.30 + 6.30i)T - 61iT^{2} \) |
| 67 | \( 1 - 8.05T + 67T^{2} \) |
| 71 | \( 1 + (6.69 + 6.69i)T + 71iT^{2} \) |
| 73 | \( 1 + (-6.43 - 6.43i)T + 73iT^{2} \) |
| 79 | \( 1 + (10.9 - 10.9i)T - 79iT^{2} \) |
| 83 | \( 1 + 8.14iT - 83T^{2} \) |
| 89 | \( 1 - 3.09T + 89T^{2} \) |
| 97 | \( 1 + (-1.31 - 1.31i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.10849205308356583686710722326, −11.18990799802745852290769747627, −10.00571645378496072350069165574, −9.134670862765522989088441393450, −8.047312045256527994767679167207, −6.96594101394087263450125158164, −6.11131538193263825395090933061, −5.21163769272579366207321594828, −3.69354963935130514350155046308, −2.05557093542852911382972420052,
0.085024200045742481498221151428, 2.86517627317646024205009282441, 4.12140787466137249200601669164, 5.10392670432579797629119931556, 6.31633828831550130809255909300, 7.22371971953694017881179669186, 8.339413411801878657706148874574, 9.662396257756138036699958720525, 10.36532403713697284778378251173, 11.04673760298224799861606187106