Properties

Label 2-340-85.64-c1-0-7
Degree $2$
Conductor $340$
Sign $0.197 + 0.980i$
Analytic cond. $2.71491$
Root an. cond. $1.64769$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (2 − 2i)3-s + (1 − 2i)5-s − 5i·9-s + (−2 + 2i)11-s + 2i·13-s + (−2 − 6i)15-s + (−1 + 4i)17-s + (4 + 4i)23-s + (−3 − 4i)25-s + (−4 − 4i)27-s + (−5 − 5i)29-s + (4 + 4i)31-s + 8i·33-s + (5 − 5i)37-s + (4 + 4i)39-s + ⋯
L(s)  = 1  + (1.15 − 1.15i)3-s + (0.447 − 0.894i)5-s − 1.66i·9-s + (−0.603 + 0.603i)11-s + 0.554i·13-s + (−0.516 − 1.54i)15-s + (−0.242 + 0.970i)17-s + (0.834 + 0.834i)23-s + (−0.600 − 0.800i)25-s + (−0.769 − 0.769i)27-s + (−0.928 − 0.928i)29-s + (0.718 + 0.718i)31-s + 1.39i·33-s + (0.821 − 0.821i)37-s + (0.640 + 0.640i)39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 340 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.197 + 0.980i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 340 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.197 + 0.980i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(340\)    =    \(2^{2} \cdot 5 \cdot 17\)
Sign: $0.197 + 0.980i$
Analytic conductor: \(2.71491\)
Root analytic conductor: \(1.64769\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{340} (149, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 340,\ (\ :1/2),\ 0.197 + 0.980i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.50414 - 1.23076i\)
\(L(\frac12)\) \(\approx\) \(1.50414 - 1.23076i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + (-1 + 2i)T \)
17 \( 1 + (1 - 4i)T \)
good3 \( 1 + (-2 + 2i)T - 3iT^{2} \)
7 \( 1 + 7iT^{2} \)
11 \( 1 + (2 - 2i)T - 11iT^{2} \)
13 \( 1 - 2iT - 13T^{2} \)
19 \( 1 - 19T^{2} \)
23 \( 1 + (-4 - 4i)T + 23iT^{2} \)
29 \( 1 + (5 + 5i)T + 29iT^{2} \)
31 \( 1 + (-4 - 4i)T + 31iT^{2} \)
37 \( 1 + (-5 + 5i)T - 37iT^{2} \)
41 \( 1 + (5 - 5i)T - 41iT^{2} \)
43 \( 1 - 4T + 43T^{2} \)
47 \( 1 + 8iT - 47T^{2} \)
53 \( 1 - 6T + 53T^{2} \)
59 \( 1 - 12iT - 59T^{2} \)
61 \( 1 + (-3 + 3i)T - 61iT^{2} \)
67 \( 1 - 4iT - 67T^{2} \)
71 \( 1 + (8 + 8i)T + 71iT^{2} \)
73 \( 1 + (1 - i)T - 73iT^{2} \)
79 \( 1 + (12 - 12i)T - 79iT^{2} \)
83 \( 1 - 4T + 83T^{2} \)
89 \( 1 + 16T + 89T^{2} \)
97 \( 1 + (5 - 5i)T - 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.64650466670953843326942694463, −10.14251521282321095822423014589, −9.192853618949269026270932781663, −8.493193022464883714532002167431, −7.66716419967769572899405012591, −6.74293581677791942289407042664, −5.49755205257844637318107156366, −4.07081328635572774399498376856, −2.47693977275187017681598269694, −1.48262641894216461678162252850, 2.63300073476749392889035075182, 3.19258874287381682468809072807, 4.56328706157006294660765678262, 5.72283295436841402428248141042, 7.13267249907464647116829217129, 8.161850327567406831073961451050, 9.092999992511108346274323937314, 9.864990421396092352765843891933, 10.63423974739071915194923018869, 11.28992739397175101097663898851

Graph of the $Z$-function along the critical line