Properties

Label 2-340-17.16-c1-0-0
Degree $2$
Conductor $340$
Sign $-0.834 - 0.551i$
Analytic cond. $2.71491$
Root an. cond. $1.64769$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.27i·3-s i·5-s + 1.27i·7-s − 7.71·9-s + 5.43i·11-s − 0.166·13-s + 3.27·15-s + (2.27 − 3.43i)17-s − 2.54·19-s − 4.16·21-s − 3.27i·23-s − 25-s − 15.4i·27-s + 6.54i·29-s + 5.98i·31-s + ⋯
L(s)  = 1  + 1.88i·3-s − 0.447i·5-s + 0.481i·7-s − 2.57·9-s + 1.64i·11-s − 0.0462·13-s + 0.845·15-s + (0.551 − 0.834i)17-s − 0.584·19-s − 0.909·21-s − 0.682i·23-s − 0.200·25-s − 2.96i·27-s + 1.21i·29-s + 1.07i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 340 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.834 - 0.551i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 340 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.834 - 0.551i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(340\)    =    \(2^{2} \cdot 5 \cdot 17\)
Sign: $-0.834 - 0.551i$
Analytic conductor: \(2.71491\)
Root analytic conductor: \(1.64769\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{340} (101, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 340,\ (\ :1/2),\ -0.834 - 0.551i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.323026 + 1.07478i\)
\(L(\frac12)\) \(\approx\) \(0.323026 + 1.07478i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + iT \)
17 \( 1 + (-2.27 + 3.43i)T \)
good3 \( 1 - 3.27iT - 3T^{2} \)
7 \( 1 - 1.27iT - 7T^{2} \)
11 \( 1 - 5.43iT - 11T^{2} \)
13 \( 1 + 0.166T + 13T^{2} \)
19 \( 1 + 2.54T + 19T^{2} \)
23 \( 1 + 3.27iT - 23T^{2} \)
29 \( 1 - 6.54iT - 29T^{2} \)
31 \( 1 - 5.98iT - 31T^{2} \)
37 \( 1 - 4iT - 37T^{2} \)
41 \( 1 + 8.54iT - 41T^{2} \)
43 \( 1 - 2.71T + 43T^{2} \)
47 \( 1 - 10.7T + 47T^{2} \)
53 \( 1 - 12.8T + 53T^{2} \)
59 \( 1 + 6.21T + 59T^{2} \)
61 \( 1 - 7.42iT - 61T^{2} \)
67 \( 1 + 6.37T + 67T^{2} \)
71 \( 1 - 2.89iT - 71T^{2} \)
73 \( 1 - 12.5iT - 73T^{2} \)
79 \( 1 + 3.77iT - 79T^{2} \)
83 \( 1 - 13.5T + 83T^{2} \)
89 \( 1 + 5.83T + 89T^{2} \)
97 \( 1 - 1.45iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.92713928588924861951507401186, −10.60299196454272440091379659376, −10.14433766882044252927766415985, −9.142413554524834773675483429568, −8.705718729382153773103449578657, −7.17773966355864231748480703975, −5.57034853120738956064666149108, −4.85140754377587187534291337806, −4.03663131742037353750634032180, −2.61262637833418317686123255019, 0.796622317057322197824446259341, 2.33833060985304386448120705085, 3.61801552685630505519917764559, 5.88229303880801374537888399171, 6.20682993424848811823532266776, 7.47790116703814081163643270956, 7.981279272462294912430743606766, 8.963415723500026764271642242215, 10.56117646586074915351476157175, 11.35275328273379455197218308190

Graph of the $Z$-function along the critical line