Properties

Label 4-3380e2-1.1-c1e2-0-1
Degree $4$
Conductor $11424400$
Sign $1$
Analytic cond. $728.429$
Root an. cond. $5.19513$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·3-s + 6·9-s + 12·17-s − 12·23-s − 25-s + 4·27-s + 12·29-s + 20·43-s + 10·49-s − 48·51-s − 12·53-s + 4·61-s + 48·69-s + 4·75-s + 16·79-s − 37·81-s − 48·87-s − 12·101-s − 28·103-s − 12·107-s − 12·113-s + 22·121-s + 127-s − 80·129-s + 131-s + 137-s + 139-s + ⋯
L(s)  = 1  − 2.30·3-s + 2·9-s + 2.91·17-s − 2.50·23-s − 1/5·25-s + 0.769·27-s + 2.22·29-s + 3.04·43-s + 10/7·49-s − 6.72·51-s − 1.64·53-s + 0.512·61-s + 5.77·69-s + 0.461·75-s + 1.80·79-s − 4.11·81-s − 5.14·87-s − 1.19·101-s − 2.75·103-s − 1.16·107-s − 1.12·113-s + 2·121-s + 0.0887·127-s − 7.04·129-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11424400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11424400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(11424400\)    =    \(2^{4} \cdot 5^{2} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(728.429\)
Root analytic conductor: \(5.19513\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 11424400,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7956657465\)
\(L(\frac12)\) \(\approx\) \(0.7956657465\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_2$ \( 1 + T^{2} \)
13 \( 1 \)
good3$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
7$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 - p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
19$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
31$C_2^2$ \( 1 - 46 T^{2} + p^{2} T^{4} \)
37$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
41$C_2^2$ \( 1 - 46 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 - 58 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 - 130 T^{2} + p^{2} T^{4} \)
71$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
73$C_2^2$ \( 1 - 142 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 130 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 142 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 - 190 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.782329130017813893019023675698, −8.105355048890860721915556903252, −8.102814624485965071133840858576, −7.70748000345931391286282647198, −7.28639401216852213802842988177, −6.66864946557653413060511748876, −6.41431444577913227147417397438, −6.08202396368087230331597442731, −5.72108161037187666210675518570, −5.46244489727843228818188171116, −5.33737447633867602657351279437, −4.63718705457336550358278868529, −4.33642021222658156372932472478, −3.86832379975189535173854779038, −3.35552926698506565891892195413, −2.70620006868094739265353761208, −2.37730660932038301990837985044, −1.23133730041348591495567225076, −1.09805004612256780152222336244, −0.40117057719229171308885344517, 0.40117057719229171308885344517, 1.09805004612256780152222336244, 1.23133730041348591495567225076, 2.37730660932038301990837985044, 2.70620006868094739265353761208, 3.35552926698506565891892195413, 3.86832379975189535173854779038, 4.33642021222658156372932472478, 4.63718705457336550358278868529, 5.33737447633867602657351279437, 5.46244489727843228818188171116, 5.72108161037187666210675518570, 6.08202396368087230331597442731, 6.41431444577913227147417397438, 6.66864946557653413060511748876, 7.28639401216852213802842988177, 7.70748000345931391286282647198, 8.102814624485965071133840858576, 8.105355048890860721915556903252, 8.782329130017813893019023675698

Graph of the $Z$-function along the critical line